General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

PASADENA, CALIFORNIA

750,713

PHOTOHELIOGRAPH

STRUCTURE, MOUNTING, AND

MECHANISMS

August 12, 1968

E. H. Rehnborg

Approved by:

J. Denton Allen, Task Leader, Photoheliograph Task

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

FOREWORD

This report covers work on one phase of the photoheliograph development task, NASA Code 945-84-00-01-00, for the period November 1967 through June 1968. The photoheliograph has been proposed to NASA for the Apollo telescope mount (ATM) by Caltech, with Professor Harold Zirin as the principal investigator and Dr. Robert Howard of Mt. Wilson and Palomar Observatories the co-investigator (see TM 33-369, November 1967). The objective of the investigation is to obtain high resolution cinematographs in white light near ultraviolet and narrow band hydrogen alpha. Because of the ATM program uncertainties, emphasis has been placed on areas of technology that are somewhat mission-independent, but the ATM spacecraft has been used to establish design constraints.

ABSTRACT

Design and analysis work has progressed to a point where the photoheliograph structure, supports, mountings and mechanisms are now being detailed for prototype fabrica-The basic telescope structure consists of a central truss-type housing which is mounted to the ATM spar. To this housing are attached demountable subassemblies containing the primary mirror and launch locks, the secondary mirror system and realignment mechanisms, and the camerafilter cluster. All components are being stress checked for the maximum anticipated launch loads. This includes the basic structural members as well as the locks and clamps which immobilize and support the mechanisms during launch. Additionally, thermal analyses are being performed for both operating and unusual conditions (such as dark-side standby, off-axis search for the sun, etc.). The results have, in certain cases, changed or modified the materials which were selected on the basis of loads and weights. Detailed design work is continuing with the object of early fabrication of critical components for environmental testing. Principally among these are the primary mirror mounting cell and the mechanisms for alignment and focus.

750-13

CONTENTS

Photoheliograph Structure, Mounting, and Mechanisms
General Description
Requirements
Alignment Mechanism
Primary Mirror
Requirements
Assembly
Secondary Mirror
Assembly
Photoheliograph Housing Structure
Thermal Control Provisions
Appendix A. Primary Mirror Vibration
Appendix B. Photoheliograph Weight Calculations 43
Appendix C. Preliminary Design Loads for the ATM Telescope 106
Appendix D. Preliminary Stress Analysis of Housing Truss Structure 108
FIGURES
1. Photoheliograph, TV Camera Version
2. Installation
3. Housing
4. Primary Mirror Assembly, Sliding Block Version 8
5. Primary Mirror Assembly, Strap Lock Version
6. Secondary Assembly Layout
7. Primary Mirror Blank
8. Secondary Assembly Perspective
9. Ball Joint Mount, Secondary End

750-13

CONTENTS (contd)

FIGURES (contd)	
10.	Ball Joint Mount, Primary End	28
11.	Heat Flow Diagram	30
12.	Camera Cluster	31
13.	Natural Frequencies of Quartz Mirrors	32

I

I.

Û

v

PHOTOHELIOGRAPH STRUCTURE, MOUNTING, AND MECHANISMS

GENERAL DESCRIPTION

The photoheliograph configuration that has now been selected for detail design is shown in Fig. 1. It consists of primary mirror assembly, secondary mirror assembly, the housing and mounting structure, the camera cluster, and various accessories. The telescope proper is mounted in one of the four quadrants of the ATM as shown in Fig. 2. This fills the quadrant to capacity and, in fact, requires the removal of some of the spar insulation to keep the housing from extending too far beyond the boundary cylinder circumscribing the spar. The best fit still requires special spar corner braces for this quadrant. The camera cluster will be located in the adjacent quadrant because of the additional space needed. The proposed ATM-B experiments have been listed by the Bendix-Martin group and these can still be properly mounted in the ATM. Fig. 2 shows the envelope of each piece of equipment.

For structural integrity, all subassemblies of the photoheliograph are attached directly to the housing, and only the housing is attached to the spar. Clearance holes through the spar are required for the components in the adjacent quadrant—the light tube, camera rack, and alignment sensor. The assembly is mounted on the ATM spar at three points, two of them are on the primary cell and the third is at the secondary end of the housing. These mounts are designed so that differential expansion of the spar, distortions due to launch loads, or thermal deflection of the spar will not load the telescope housing and hence will not produce any alignment errors of the mirror surfaces relative to each other (See Fig. 3). Pointing may be shifted relative to the ATM center line due to these thermal distortions or as a result of launch loads. The spotting scope, however, and the monitoring vidicon systems will identify the target, and differences in pointing between the photoheliograph and the ATM fine sun sensor can be compensated for by the astronaut.

Fig. 1. Photoheliograph, TV camera version

Fig. 2. Installation

Fig. 3. Housing

As installed in the ATM, the restraint of heat transfer to or from the spar have been considered by (1) selecting low-conductivity materials for the mounts, (2) retaining at least one inch of super insulation on the spar at the points where the housing structure comes close, and (3) wrapping the telescope with a thermal insulating blanket. The operating temperature of the telescope structure will be approximately 75°F with the active cooling system running. The insulation provisions, plus the fact that excess solar energy is effectively dumped directly to space, will properly restrict the heat transfer to the ATM spar.

Over one quadrant, the ATM canister cold wall faces the thermal control radiator for the active cooling system. The radiator is attached to the spar along either side, to the telescope along the center, and to the spar conner braces at each end. The radiator is basically a plate to which a grid pattern of tubing is attached (similar to the canister cold wall) which conducts the cooling fluid from the telescope to the pump and accumulator. Stiffeners will be added as necessary, but as this structure needs only to be self-supporting, elastic flexibility during launch will not be a problem.

Each component of the photoheliograph structure has been or is being stress-analyzed for a 50g static equivalent of the combined launch modes of steady acceleration plus vibration plus acoustic energy (Appendix C). As the weight limitation does not allow each member to be heavy enough to insure no distortion as a result of these launch loads, the design incorporates several realignment mechanisms which may be operated by the astronaut, either remotely or manually, once the ATM is in orbit. Primarily, these included two sets of motor-gear assemblies which can adjust the secondary assembly in all 6 degrees of freedom.

The reference is the alignment sensor which is mounted rigidly to the primary mirror cell. The tolerances on the orientation and distance of the sensor from the optical axis has been specified in detail (Document 750-8). These are necessary in order to be able to rely on the alignment sensor for in-flight realignment of the secondary assembly. At least one realignment is mandatory—the initial one following release of the launch locks. (See later discussion on Secondary Assembly.)

During launch, the telescope aims downward and all moveable items are held securely by launch locks. These include sets at the primary mirror, the secondary assembly, and the moveable camera cluster. The ATM canister provides a dust-tight door; contamination within the ATM is prevented from entering the telescope by a flexible collar running from the secondary assembly ring to the canister end plate. The detailed structure, adjustment mechanisms, and launch locks are described in the following sections.

REQUIREMENTS (Figs. 1 and 2)

One of the two basic specifications for the mechanical design of the photoheliograph is the Functional Requirements Specification by Professor Zirin. The requirements of the number of cameras and the operating wavelengths and the bandwidth for each of them are obtained from this specification. These data, in turn, determine the dimensional stability requirements, the exposure time, the vibration level that can be tolerated in operation, and the tolerable vibration level that can be generated with the thermal control system and motors. This specification also controls the minimum acceptable size of the telescope. The upper limit is determined by the space available in the spacecraft. The dimensions of the subassemblies and the weight of the components are determined from this information. The specification also specifies the alignment control and the realignment capabilities which affect the structure. All of these data determine the requirements for launch locks. The size, weight, and movement (control and alignment movement) of the various components establishes the component strength which determines the requirements for launch locks. Basically, the Functional Requirements Specification determines the telescope outline.

The second specification is the Marshall Spaceflight Center Environ-mental Design and Test Criteria. This specification lists the temperature, launch vibration, acceleration, and acoustic levels. It further specifies the heat transfer—the method to be used for cooling and the allowable heat load to be dissipated. From conferences with Marshall, Bendix and Martin-Marietta, the limitations on telescope size, weight, and mounting location in the ATM were ascertained. This information controlled the outside diameter, the length, the accessory protuberances, and the method of mounting to the spar.

The conferences also indicated the arrangement of the thermal control radiator and the location of the camera cluster. The final configuration has not been compromised structurally or mechanically. Changes, if any, for mounting on a different spacecraft would be accessory locations and mounting attachments. See Figs. 1 and 2.

The location of the camera cluster in the adjacent quadrant will not be a problem during assembly in the ATM because (1) notches can be made in the spar so that the camera rack can be preassembled to the telescope and the assembly inserted into the spar, (2) the light tube is non-critical and can be added later by mounting to the housing through access holes, and (3) the alignment requirements of the cameras are not very restrictive. The light beam coming down toward the cameras is approximately 5 cm in diameter. As long as there is a full frame within that beam, it is a matter of mental calibration to determine what is being photographed. This can be verified by the monitor white light vidicon located with the film cameras or by the real time display if vidicons are used. The full camera frame is about 2-1/2 cm. The large beam allows some motion of the secondary assembly during realignment without losing the picture, i.e., without the beam sweeping past the frame. The spotting telescope serves only for rough spotting; fine detail cannot be seen through it and it merely gives an indication of where the telescope is pointed on the face of the sun. The final verification of the aiming is with the monitoring vidicons.

The interface with the ATM places no restriction on how the photoheliograph is attached to the spar, providing that there is no interference with any other experiment and no compromise of the super-insulation provided for the spar. The generally accepted mounting method is a three-point compensating suspension, so that the mounting is rigid but does not load or distort the housing if the spar should distort. That is, each mounting is free in some directions, but holds in the others. See Figs. 3, 4, and 5.

The interface of the photoheliograph with the ATM or other spacecraft support includes thermal, mechanical, electrical, and optical considerations. The thermal interface consists of the heat-transfer restrictions to the support structure and to space. The latter, in the ATM, means radiation to the canister coldwall. The mechanical interface includes the mounting provisions,

Fig. 4. Primary mirror assembly, sliding block version

Fig. 5. Primary mirror assembly, strap lock version

the dust contamination sleeve, the thermal control fluid piping, and the doors in the canister provided by the ATM. Also, the possibility of astronaut EVA for adjustments or film change or repairs might be added. The electrical interface includes raw power to the photoheliograph plus the control and signal lines to and from the photoheliograph and the astronaut control console in the LM. The optical interface consists of (1) the pointing of the telescope and (2) the alignment of the telescope with the fine sun sensor. The optical input is then converted to electrical energy and becomes part of the electrical interface. The optical requirements specifications have dictated certain requirements on the structure for initial alignment and in-space realignment.

ALIGNMENT MECHANISM

Two methods of approach to an alignment mechanism are possible:
(1) everything bolted or welded in place so that it will not shift, but would result in a tremendous weight penalty, or (2) the logical approach, which is to make everything that might move, adjustable.

As long as adjustments are being made, the range should be large enough to compensate for fabrication tolerances. Initially, there are optical tolerances in the primary mirror, namely, the location and angle of the optical axis and the focal length. This immediately requires five degrees of freedom in the mounting cell of the primary mirror - that is, five rather than six degrees of freedom because as the mirror is circumferentially symmetrical, roll is not a factor. The exact same tolerances plus roll apply to the concave secondary mirror, and the same alignment adjustments are built into the secondary mirror mount. The roll, or sixth degree of freedom is important because at the center of the secondary is the small alignment mirror, which receives a beam at three degrees off the optical axis. The in-space realignment mechanism in the secondary assembly will take care of all necessary realignment of the telescope due to small permanent shifts in the structure such as slippages of truss joints and so on, but not catastrophic changes. Catastrophic changes would be ones that require EVA to manually realign a normally fixed item such as a secondary flat, or to put the camera back on its track, or to repair the mount, etc. A telescope structure cannot be built to these weight limitations and only elastically deform due to the given launch loads. There may be some shift. It is not a completely homogeneous structure; there are bolted and riveted joints.

During initial assembly, each optical component will have to be adjusted as far as its alignment is concerned. This is due to the inherent manufacturing tolerances of the mirror themselves, of the mounts, of the structure, and so The adjustments on the primary mirror are in the clamps around the central hub, which can tilt the mirror in pitch-and-yaw and shift it laterally Z and Y (spacecraft coordinates, see Fig. 2). After that is done, the launch locks, which are located around the outside circumference of the mirror, are individually adjusted so that they fit properly. The coarse adjustment of the axial or X-position (again, spacecraft coordinates), which is the primary to secondary spacing and may vary plus or minus 1-inch from nominal, is done by spacer blocks between the primary mirror cell and the first ring of the housing structure. There are three sets of these because there are three bolt points between cell and housing. The fine X adjustment will be done later, in space, by the mechanism that moves the secondary assembly. We can allow this because the total motion of the secondary, as far as is optically permitted, is plus or minus 0.040 inch. The total X-direction travel of the secondary that has been built-in to take care of all possible contingencies, is plus or minus 1/8 inch.

Within the secondary assembly we have the same tilt and Z-Y position adjustments as for the primary mirror and also the secondary cell can be moved in the X-direction relative to the central tube. The reason for this Z motion capability within the secondary is to take care of the tolerance in the focal length in the secondary mirror. Thus, there are three X-direction adjustments; first there are the primary cell-housing spacers which is a coarse adjustment of primary to secondary distance, second is a coarse adjustment of the secondary mirror, which compensates for the secondary focal length, that is, the distance from the field stop in the heat-stop mirror to the secondary mirror, and the third is the fine adjustment of the entire secondary assembly, which can be done repeatedly, on the ground and again in space.

Each of the three diagonal flats in the secondary assembly (see Fig. 6) namely, the heat-stop, the first diagonal flat on the inside of the secondary assembly, and the second flat up behind the corner of the light tube, has in its cell a three-point suspension that is adjustable to take care of small tilt requirements. This is also an initial adjustment, on the ground, during assembly.

The final assembly adjustment is in the camera cluster. Each component can

Fig. 6. Secondary assembly layout

be shimmed and the entire movable track can be adjusted, up and down and laterally. This is in order to get the beam of light centered on the camera frames when everything else is in neutral position. The first adjustment for the camera rack is to get the final field stop centered on the beam. After that each component can be centered on the beam. In progression, these include the beam splitters, the filters, the cameras, and the monitoring vidicons.

The tightest tolerances that we have after the primary-secondary distance is the location of the alignment sensor relative to the optical center of the primary mirror. This is our reference for in-space realignment. For that reason the alignment sensor is mounted directly to the primary mirror cell to minimize the mechanical path length between the optical axis and the alignment sensor. Zero shift between those two is desirable. The allowable is very small, on the order of \pm 0.001 in. between the optical center of the primary mirror and the center point of the rotating knife edge in the sensor.

There are other, non-critical adjustments, such as the heat-dump mirror, the small diagonal mirror in front of the spotting scope and the spotting scope itself. But these adjustments can be by standard shim or slotted bolt-hole construction. Undetermined at this time is what alignment adjustments are necessary for the telescope as a whole, relative to the ATM spar, in order to bring us into alignment with the fine sun sensor or the ATM spotting scope. These may not be at all necessary because differences in pointing can be calibrated during final alignment tests. The active alignment (and realignment) control is mainly the motion of the secondary mirror assembly and in conjunction with the alignment sensor and can be can be used during in-flight, photographic operation. It is not a one-time effort like the ground alignments during assembly.

PRIMARY MIRROR

REQUIREMENTS

In evolving a design for the primary mirror, various requirements sometimes conflicting, had to be considered. Each had to be satisfied, at least in part, to the extent that no optical or operational constraint was compromised. The resulting configuration is somewhat unorthodox, but only in superficial appearance. Structurally, and fabrication-wise, the design is sound. The final configuration (Fig. 7) of a thin, radially tapered, solid structure with internal active cooling passages and a stabilizing hub at the rear represents the best compromise and, on paper, satisfies each of the requirements.

From the various pertinent documents, in-house analyses, and discussions with cognizant personnel at MSFC, Martin-Marrietta, and Bendix, the following mechanical requirements for the primary mirror were obtained:

- (1) Material amenable to the usual grinding and polishing techniques for high quality optics
- (2) Low expansion coefficient, or high thermal conductivity, or both
- (3) Material to be homogeneous such that any thermal or load deflection will be uniform around a circumference within the optical path difference (OPD) tolerances
- (4) All dimensions to have circumferential symmetry
- (5) Launch loads (acceleration, vibration and acoustics) to be those of Appendix A (worse case at the spar-unattenuated), MSFC Spec. 50M 02408, "Environmental Design and Test Criteria for ATM Components" January 31, 1967
- (6) Vibration and shock levels in operation assumed zero or of such a low level as to have no inelastic effect on unlocked components

Fig. 7. Primary mirror blank

- (7) Active thermal control (liquid cooling) of all critical optical components. The criteria are to be whether or not the surface is in the primary optical path, the expected surface temperature without active cooling, and the presence of adjacent, thermally conductive structure
- (8) Weight to be reasonable, of the order of 10 percent of the entire assembly, consideration to be given to adequate support by a mounting cell of practical proportions
- (9) One-g deflection (for pre-launch testing) to be either negligible optically, or able to be calculated with certainty. Deflections greater than the OPD tolerance to be second order parabolic radially
- (10) For the Gregorian arrangement, with uniform thermal input over the face of the primary, the liquid cooling must be at a constant distance behind the face and uniformly distributed over the area
- (11) For minimum surface temperature rise (and hence, minimum thermal distortion), the distance between the front surface and the cooling passages should also be a minimum, with due consideration to problems of fabrication and figuring
- (12) Remotely controlled, single-shot locks or clamps to be provided to take the calculated launch loads. (The practical locations are around the outside circumference see later discussion)
- (13) The operational holding arrangement to be fixed and undisturbed by the launch loads. Maintaining the location and alignment of the primary mirror relative to the cell is absolutely required if the alignment sensor is to be relied upon for adjusting the secondary assembly in space. (The practical location for this is at the center see later discussion)

ASSEMBLY (Figs. 4, and 5)

The primary mirror assembly includes the primary mirror proper, the mounting structure with its initial alignment adjustments, the cell that supports

the mounting structure, the launch locks, and a bracket for mounting the alignment sensor. The configuration and the performance requirements on the primary mirror are described elsewhere in this report; however, the cell and the mounting structure have a few additional constraints and requirements. First, the mirror must be held securely during operation at the required position and orientation. This holding system should be lightly loaded by the launch environment in order to minimize any chances of shift in the initial alignment. Secondly, a launch lock systems must be provided which can be positioned prior to launch and unlocked, on a one-shot basis, just prior to operation. These launch locks will consist of a series of shoes around the outer circumference of the primary mirror, located at equal intervals of 30 degrees. Each spans about 5 degrees of the mirror circumference. Two systems are presently in the process of being designed: (1) each shoe is individually unlocked by a thermal actuator similar to the ones used in the secondary assembly (See Fig. 4) -- a simpler but less reliable system, and (2) pivoted shoes, clamped into position by a circumferential band which is separated at two points, diametrically opposite, giving redundancy in the unlocking and high-reliability (See Fig. 5). In the second system, unlocking is also effected by thermal actuators which remove pins, or locking balls in the overlapping ends of the strap.

The outside launch locks will take the majority of the longitudinal acceleration and will restrain the mirror from any tilt due to lateral or torsional vibration. They will also prevent the outside ends of the mirror from flapping up and down relative to the center due to longitudinal vibration. Initial stress analysis, to size the bolts and shoes themselves have been done based on the assumed 50-g - equivalent static load (See Appendix C). The lock and mounting assembly has been examined for all principal vibration modes, rigid body, oil can, and lateral. If the rigidity of the hub support and rim support can be estimated, the lowest rigid body frequency for the mirror can be calculated as follows.

$$\omega^2 = \frac{K_r R_r + K_n R_n}{m} 2\pi (radians/sec)^2$$

where,

R_r = Mirror Radius (in.)

 $R_n = \text{Hub Radius (in.)}$

K_r = Rim Support Stiffness (lbs./in.²)

K_n = Hub Support Stiffness (lbs./in.²)

m = Mirror Mass (slugs)

The center of the mirror is not free, but is restrained in the axial direction by the operational mount. Each outside clamp shares an equal mass of mirror. There will be some elastic motion of the mounting structure, as the lowest stiffness will be the center attachment. Moderate vibration of the mirror as a rigid body would not be objectionable, providing all members stay within their elastic limits. The amplitude can be held down to a reasonable limit by providing absorption pads or coatings or by selecting structural materials for high internal damping. Thus, the first two requirements are: (1) a secure stable operational mount, and (2) launch locks to prevent fracture. The third requirement is that the mirror should not deflect during vibrations, and that, if it moves, it moves as a rigid body. This means that the outside clamp system should have a stiffness comparable to the center support, because if they are rigid, the load will be transferred from the center to the outside edge during each vibration cycle. Either of two systems shown can be made to work, but more analysis is needed before we detail design the components.

The support structure located behind the mirror consists of a series of six radial trusses running between the outer cell ring and a center tube surrounding the hub of the mirror and holding the operational mount mechanism. The preferred design of these trusses is to have them machined

(税)

out of aluminum sheet stock. This eliminates web fasteners and corner joints for the stiffeners. Each truss will be bolted to the rings of the inner and outer end. The trusses have also been designed to carry the majority of the bending moment at the inner edge because this arrangement improves the stiffness without a weight penalty. Adequate clearance is provided for the cooling piping to and from the mirror, for adjusting the launch lock blocks, and for adjusting the center operational holding assembly.

This center assembly has several features of interest: (1) a ring (metallic) is lapped into a groove at the base of the primary mirror hub. ring is held by a split shoe circumscribing it. The ring itself is split in two or three pieces so that it can be cinched up tight into the groove after the lapping. The shoe is attached to the support tube by three axial bolts with ball joints. These bolts can adjust the mirror in the X-direction a small amount and can tilt it in pitch-and-yaw for initial alignment of the primary mirror optical axis. The lateral position of the ring is controlled by four over-sized set screws. They provide the Z and Y adjustment. The shoe is fixed in the Z and Y direction and has as its outer edge a section of a large spherical ball which rides against the tube. Z and Y motion of the mirror is controlled solely by the inner ring being moved relative to the shoe. At this point, the holding of the Z and Y position is quite rigid, but the holding in tilt is not because of the short wheel-base of the clamp ring. Therefore, additional set screws have been provided at the very rear end of the hub. There are two sets of screws: first are four which are mainly holding screws; and then there are four additional ones that press against flats at this back end, which hold the mirror from rolling around the longitudinal X-axis. All of these screws are accessible after the primary mirror and cell have been assembled to the housing. This allows for adjustments during initial assembly and readjustments, if necessary, on assembly of the telescope to the spacecraft.

A fourth constraint, on the design of the launch lock system in particular, was that the release mechanisms could not be explosive types nor could they be hydraulically actuated, because in either case there was a danger of leakage of a volatile working fluid which could contaminate the optical surfaces. Also, explosive squibs are not allowed on man-rated systems. The thermal

actuators are totally sealed, are not explosive, and their reliability, from past experiences, has been extremely high. They can also be tested repeatedly prior to launch.

As designed, the overall length from the rear of the primary mirror in its nominal position to the sunshade at the end of the secondary mirror assembly is exactly 120 inches. This was the limit imposed by the spar dimensions of the ATM. Marshall, Bendix, and Martin, have given verbal permission for using an additional three inches beyond the spar at the LM end of the ATM. This will be used for the cooling fluid fitting at the center of the primary mirror hub. After assembly, a guard will be placed over the hub to prevent any damage. As presently envisioned for use with the ATM, if any of the launch locks stick or fail to actuate, there are provisions for emergency unlocking, either by manually reactivating the launch lock or by prying the shoe unlocked through an access hole. This feature exists at both the primary and secondary assemblies.

SECONDARY MIRROR ASSEMBLY (Figs. 6 and 8)

Basically, this assembly consists of the secondary mirror and mount, the two diagonal flats, the heat-stop mirror, the secondary mounting spider and the outside support ring. This assembly is a light-weight rigid structure because it is controlled as a rigid body for realignment. Connecting the secondary assembly and the sun end of the housing structure are, first of all, four launch locks and then eight motor-gear-train pushrod assemblies. Four of these latter assemblies are for X-direction adjustment plus pitch and yaw tilt. The other four are for Z and Y motion, plus roll. During launch the X direction motors will be retracted and the secondary will be tight against the end of the housing. There will be little or no load on any of the alignment pushrods. The launch locks will pull the secondary assembly tight against the end ring of the housing. The Z and Y restraint is by a serrated lip around the housing, that prevents Z and Y motion and roll of the secondary assembly relative to the housing. The launch locks are released by thermal actuators. These are cylinders with flexible end bellows. They are filled with a high-expansion material plus a small heater winding. When electric power is run through them the material expands and pushes or pulls a rod. The rod then comes out of the launch lock hole and catches on a ratchet which holds it in the unlocked position. It is strictly a one-time unlocking. This is done after the telescope is in orbit, finished with its docking, and ready to operate, because relock for any subsequent maneuvering is not possible.

After the secondary is unlocked, the X-axis motors are run until the secondary ring is approximately 1/8 inch away from the end of the housing. This is its center position for subsequent in-space realignment. The lateral direction is controlled by four similar assemblies which are arranged circumferentially around the secondary ring, that is, for the Z and Y direction plus roll. They push against brackets that are attached to the end ring of the housing. By operating these is pairs Z and Y motion can be obtained in any direction. By operating all four together, in the same direction, roll can be obtained,

Fig. 8. Secondary assembly perspective

which may be useful in repositioning the final image at the cameras after realignment of the secondary assembly has been accomplished. The Z axis pushrod assemblies have a ball joint at the ends which, at the request of the optics people, has been located in the plane of the secondary mirror surface so that all tilting is done around the center of the secondary mirror. The lateral pushrod assemblies also are terminated in a ball joint, but their location is not critical to the assembly, and they have been located for convenience to the mechanical package. These motors assemblies could have been groups of three or four. Three would give all the control needed, except for roll, because lateral stability would be lacking with a circumferential arrangement. The four X-direction motors provide an additional bonus. Because its impossible to run them all exactly the same amount, the system is always locked. There is no backlash or slop for any amount of adjustment. A strain is developed, but the pushrod can take some 20,000 psi, and the motors are capable of only developing something in the order of 2,000 psi. The motor runs through a gear train. This actuates a threaded rod which rotates inside a ball nut. The nut is attached to the pushrod and is restrained to move only axially. The pushrods are approximately 1/4 inch in diameter by 4 inches long. They can flex sideways 1/8 inch without exceeding 2000 psi. Once in orbit, there are no static loads on this assembly, so the size has been more controlled for fabrication convenience than by any strength requirements. Also, the constant threat of a small vibration level during operation means that the pushrod should be of a size convenient for applying damping material or sufficiently stiff to prevent objectionably large amplitudes.

PHOTOHELIOGRAPH HOUSING STRUCTURE (Figs. 3, 9, and 10)

In the initial design, the housing for the photoheliograph was a cylindrical aluminum honeycomb structure. The inner and outer skins were 0.020-inch aluminum sheet and the center was either aluminum or non-metallic honeycomb or foam. The housing extended from the primary cell to the secondary assembly. At the secondary end was a terminating ring, holding the realignment mechanisms. Mounting to the ATM spar was to be at the primary cell and at this terminating ring. A three-point mounting system similar to the present design was envisioned.

The advantages of a solid cylindrical housing are that it provides a maximum of strength and rigidity for a given weight, or conversely for given set of loads a minimum weight. Attachments to the housing for various high load points, such as the mounting of accessories and the mirror assemblies, is easily accomplished by reinforcement plates or gussets. Access for mirror adjustment can be by means of small doors. Thermal insulation between the optical components and the surrounding ATM structure is automatically provided by the housing.

The disadvantages of this type housing are not immediately apparent. However, analysis has shown that during launch, the housing acts as a half-wave organ pipe with the primary mirror acting as the end closure. This pipe is resonant at various frequencies between 35 and 200 cps, from sea level to 15 km, which is in the region of maximum acoustical energy. Further analysis indicated that the primary mirror support system within the given weight limits could conceivably have a stiffness such that the primary mirror would resonate as a rigid body also in the region of 200 cps. Together these created a very unsatisfactory situation.

Another difficulty with an aluminum housing is the high thermal expansion coefficient. It is expected that the housing temperature could vary from below 70°F to above 75°F during normal operation. This is because the end cover would be open during the entire orbit, half of which would be sunlight and half in the shadow of earth. A 5° to 7°F change in temperature would change the length of the housing by .015 inch. This is not beyond the capability of the realignment mechanism as to magnitude but it is in regard to the rapidity in which

it occurs. Refocusing the camera could compensate for a part, but not all. To overcome this, 3 spacer rods made of low-expansion, super-invar alloy were located around the housing. As the launch locks are released, the secondary comes to rest on the ends of the rods. The housing is then free to expand or contract within these rods; and thus primary to secondary mirrors spacing is maintained. However, if, during operation, the telescope should point off from the sun by more than 1 degree, sunlight will strike one side of the housing. In this case, there will be a differential expansion between the opposite sides of the housing, and the tube will bend laterally. The lateral movement of one end relative to the other could be as much as 1 1/2 inches, which definitely beyond the correction capabilities of the realignment mechanism. To date, there is no assurance that the telescope pointing will be maintained within the required plus or minus 1/2 degree throughout the entire orbit. It seems reasonable to expect greater deviation when one considers the Fine Sun Sensor is the basis on which the pointing control is operated.

The truss housing now designed eliminates these problems of acoustics and thermal expansion without undue penalty in weight. This is accomplished by making the truss structure of thin-wall invar tubing. The procedure has been used before here at JPL. Fig. 3 shows the structure. The arrangement falls within the size boundary of the telescope quadrant without obscuring any of the primary mirror. The mounting for the spar may now be directly to the housing at the ends with the primary and secondary subassemblies attaching directly to the housing. The camera cluster and light tube, which are in the adjacent quadrant also attach directly to the housing by means of clearance holes through the spar.

Stress analysis has been made on this structure under the theorized 50 g equivalent static load (See Appendix C and D), and the tube sizes have been tentatively determined. Besides eliminating previous problems, this type of structure provides less complexity and considerable increase in strength for supporting the optical assemblies during launch. For thermal insulation, a blanket of aluminized mylar (so called "super insulation") will be wrapped around the housing. This will have an added advantage of providing considerable vibration damping to the individual truss members. Reinforcement plates

are added where necessary to support accessory equipment such as the secondary realignment mechanisms, the spotting scope, the head dump mirror, and the mounting brackets to the light tube and to the heat radiator.

The mounting to the spar will be by a three-point assembly as shown in Fig. 3 or in Fig. 9 and 10. This latter system is similar to that used by Ball Bros. Research Corp. on other ATM experiment designs. It includes a single ball at the secondary end, which takes loads in all three directions. At the primary end are 2 trusses which take lateral loads as well as restrain the telescope from rotation about any axis. Side loads at the primary end are taken by a third member inclined to the other two. All of these members have ball joints to prevent the development of any bending moments within the members themselves. Mountings of this type are also useful in creating a path of high thermal resistance between the telescope and the spar. Small crosssections and low-conductivity material, such as titanium tubing can be used and still have adequate strength within the space limitations. Various versions of the three-point support are possible, but in any form, it is desirable to prevent the loading of the telescope due to any distortions of the spar or frame work to which the telescope is mounted, either due to launch loads or to temperature changes within the structure.

Fig. 9. Ball joint mount, secondary end

Fig. 10. Ball joint mount, primary end

THERMAL CONTROL PROVISIONS (Figs. 1, 11, and 12)

In the secondary assembly each mirror absorbs some solar energy. If there were no cooling provisions, the surface temperatures could rise to the point where either the mirrors would distort or the surface coating material could be lost. The mirror that receives the highest heat load in watts/cm² is the heat-stop mirror at the primary focal point. The entire solar energy from the 65 cm. primary is concentrated into an approximate 2.5 cm diameter image. This represents 400 watts, approximately 10 of which go through the little hole in the center, about 20 watts are absorbed even though the mirror is silvered rather than aluminized for its higher reflectivity, and the balance of that energy is reflected over into a concave heat-dump mirror located at the housing side wall. Again approximately 20 watts is absorbed, and the balance about 350 watts, is dumped diagonally out through the front opening into space.

Of the 10 watts that pass through the primary field-stop hole, about 1 watt is abosrbed at the secondary mirror and at each of the diagonal flats. The secondary mirror and the first diagonal are provided with active cooling. Part of the main liquid cooling system for the telescope is bypassed in series or parallel with the primary mirror. Tubing is run along the spiders, one to conduct the liquid into the secondary assembly and another to conduct it back out. The fluid comes in first to the secondary mirror and then passes down the secondary tube to the first diagonal flat. Between the first diagonal flat and the field-stop mirror is a plenam chamber. In other words, we use the cooling fluid itself as the heat barrier between the heat-stop mirror, which gets very hot, and the first diagonal flat which must be protected because the two are very close together, and it was not practical to use a tubing grid for conducting the fluid between the two. From there, the fluid passes back out of the secondary assembly and over to the heat dump mirror, which has a "token" spiral of tubing on its back just to keep the temperature from running away.

The second diagonal flat is isolated from the rest of the telescope and has a large mass of metal around it in the form of mounting and light tubes. It is located in the next quadrant, which has a direct view of the ATM cold wall in the canister; so it was felt that conduction and radiation would be adequate, and that no liquid cooling was necessary. This leaves about 6 1/2 watts of energy passing down the light tube towards the camera cluster.

HEAT FLOW DIAGRAM

Fig. 11. Heat flow diagram

CAMERA CLUSTER - PHOTOHELIOGRAPH

PRIMARY MIRROR NATURAL FREQUENCIES OF QUARTZ MIRRORS

DESCRIPTION	MOUNTING	THICKNESS, in.	WEIGHT, Ib	FREQUENCY, cps
1. CONSTANT THICKNESS	EDGE	1	65	400
2. CONSTANT THICKNESS	CENTER	1	65	250
3. CONSTANT THICKNESS	FREE	1	65	350
4. CONSTANT THICKNESS	EDGE	3	196	1200
5. TAPERED, UNIFORM, WITH SHORT HUB	EDGE	1 TO 3	74	760
6. TAPERED, UNIFORM, WITH SHORT HUB	CENTER	1 TO 3	74	510
7. TAPERED, UNIFORM, NO CENTER HUB	EDGE	1-1/2 TO 4	101	1080
8. TAPERED, DOUBLE, WITH LONG HUB	CENTER	1 TO 4	84	640
9. TAPERED, DOUBLE, WITH LONG HUB	EDGE AND CENTER	1 TO 4	84	1780

ASSUMPTIONS:

ALL MIRRORS 65 cm DIA
ALL MIRRORS OF QUARTZ
OUTER EDGES SIMPLY SUPPORTED, CENTERS CLAMPED

Fig. 13. Natural frequencies of quartz mirrors

After the action of the beam-split and filters, about 5 watts of this are still left over as excess heat. This comes off the second beam splitter along with the white light beam and passes through a Herschell wedge, which peels off just a small amount needed by the white light camera. The energy that passes through the Herschell goes into a light horn, which is a totally absorbing dump. This may or may not be provided with liquid cooling coils. The provisions are in the design, but this horn has a clear view of the ATM coldwall and radiation fins may be sufficient. So far, we have made no provisions for active cooling of any of the cameras or filters. The total power consumed by these is, in the case of vidicons, in the order of 2 watts apiece; and they have a large surface area. We feel that radiation cooling should be sufficient. Film cameras may use, intermittently, 25 watts per motor. There is a motor for film advance and one for shutter control in each camera. Also, in the H_{lpha} camera, if a Lyot type filter is used, there may be an additional 35 watts for its thermal control system which will have to be dumped somehow. If a Fabry-Perot type is used, then the wattage drops to about 2 and can be radiated directly to the cold-wall.

APPENDIX A PRIMARY MIRROR VIBRATION

N

IJ

N

APPENDIX A

PRIMARY MIRROR VIBRATION

Dr. C. Babcock

Professor of Applied Mechanics, California Institute of Technology

I. SUMMARY

The following is a summary of the calculations made to determine the lowest natural frequency of the mirror supported in various manners. The details may be found in the Analysis Method Section.

(a) Frequencies (Uniform Thickness)

All of the frequencies calculated can be written as follows

$$f = K \sqrt{\frac{E}{\rho}} \frac{t}{R^2}$$

For the mirror (E = 13.4×10^6 psi, $\rho = .09 \text{ lb/in}^3$)

$$\sqrt{\frac{E}{\rho}}$$
 = 240,000 in/sec

For a uniform Mirror the following values of K have been found (use $\nu = 1/3$)

SUPPORT

$\underline{Inside} (r = 0)$	$\underline{\text{Outside}} \ (r = R) \qquad \underline{K}$
None	Simple Support . 277
None	Clamped .500
Clamped	None . 181
Clamped	Simple Support 1, 194

(b) Non-Uniform Thickness

A calculation to determine the effect of the non-uniform thickness was carried out. It was found that the error in frequency was less than 14 percent if an average thickness was used

$$\left(t_{a} = \frac{\text{Base Thickness} + \text{Rim Thickness}}{2}\right)$$

If thickness giving the same volume is used the error is less than 3 percent for $\alpha < 1/2$ where

$$t_{Rim} = t_{Base} (1-\alpha)$$

(c) Analysis Accuracy

In order to determine the accuracy of the analysis the results were checked against an exact calculation. For a clamped uniform plate

$$f exact = .494 \sqrt{\frac{E}{\rho}} \frac{t}{R^2}$$

$$f \text{ approx} = .500 \sqrt{\frac{E}{\rho}} \frac{t}{R^2}$$

The error in this case is less than 2 percent

(d) Effect of Hub

The mass of the hub can be accounted for by adding it into the kinetic energy term in the analysis. This gives the following result for the simply supported plate

$$\frac{f \text{ (with hub)}}{f \text{ (no hub)}} = 1 / \sqrt{1 + 6 \frac{d_n}{t} \frac{R_n^2}{R^2}}$$

where

 $d_n = Depth of Hub$

 $R_n = Radius of Hub$

t = Mirror Thickness

R = Mirror Radius

II. ANALYSIS METHOD

Since the main interest is the frequency of vibration, an energy method will be used. This will be checked against known frequencies to determine the accuracy.

(a) Energy Method

The energy method of finding the natural frequencies consists of equating the strain energy of the plate at maximum amplitude to the kinetic energy at maximum velocity. For the circular plate these quantities are as follows: (assuming axisymmetric vibration)

Strain Energy = U =

$$= \int_{0}^{R} \int_{0}^{2\pi} \frac{1}{2} D \left\{ \left(\frac{\partial^{2} w}{\partial r^{2}} \right)^{2} + \frac{1}{r^{2}} \left(\frac{\partial w}{\partial r} \right)^{2} + 2 \nu \frac{1}{r} \left(\frac{\partial^{2} w}{\partial r^{2}} \right) \left(\frac{\partial w}{\partial r} \right) \right\} r dr d$$

$$D = \frac{Et^3}{12 (1 - v^2)}$$

Kenetic Energy =
$$T = \omega^2 \int_0^R \int_0^{2\pi} \rho t (w)^2 r dr d\theta$$

 ω = Frequency in radians/second

In order to find the frequency a displacement function which satisfies the geometric boundary conditions is assumed. Carrying out the integration the frequency ω is determined.

- (b) Particular Cases
- (1) Simply support at outside edge (uniform thickness)

The assumed function must satisfy the condition

$$w = oatr = R$$

Use

T

$$w = W_0 \left(1 - \frac{r^2}{R^2} \right)$$

Carrying out the integrations:

$$U = D_{\pi}4 (1 + \nu) \frac{1}{R^2} W_o^2$$

$$T = \omega^2 \pi \frac{1}{6} \rho t R^2 W_0^2$$

$$\omega = \sqrt{\frac{E}{\rho}} \frac{t}{R^2} \sqrt{\frac{2}{1 - \nu}}$$

radians/second

for $v = \frac{1}{3}$

$$f = \sqrt{\frac{E}{\rho}} \frac{t}{R^2} \frac{\sqrt{3}}{\alpha \pi}$$

(2) Clamped at outside edge (uniform thickness)

For this case the assumed function must satisfy

$$w = o \text{ and } \frac{\partial w}{\partial r} = o \text{ at } r = R$$

Use

$$w = W_0 \left(1 - \frac{r^2}{R^2}\right)^2$$

Carrying out the integrations

$$U = D_{\pi} W_{o}^{2} \frac{1}{R^{2}} \frac{32}{3}$$

$$T = \omega^2 \rho t_{\pi} R^2 \frac{1}{10} W_o^2$$

$$\omega = \sqrt{\frac{E}{\rho}} \frac{t}{R^2} \sqrt{\frac{320}{36(1-\nu)}}$$

$$f = \sqrt{\frac{E}{\rho}} \frac{t}{R^2} \frac{\sqrt{10}}{2\pi} \qquad \text{for } \nu = \frac{1}{3}$$

(3) Clamped at outside edge and supported at center (uniform thickness)

For this case the assumed displacement must satisfy

$$w = oatr = Rand$$

$$\begin{cases} \mathbf{w} = \mathbf{o} \\ \frac{\partial \mathbf{w}}{\partial \mathbf{r}} = \mathbf{o} \end{cases}$$

Use $\omega = W_0 \left(\frac{r^2}{R^2} - \frac{r^4}{R^4} \right)$

Carrying out the integration

$$U = D_{\pi} W_{o}^{2} \frac{10}{R^{2}}$$

$$T = \rho t_{\pi} \omega^2 W_0^2 R^2 \frac{1}{60}$$

$$\omega = \sqrt{\frac{E}{\rho}} \frac{t}{R^2} \frac{15}{2}$$

$$f = \sqrt{\frac{E}{\rho}} \frac{t}{R^2} \frac{15}{4\pi}$$

(4) Effect of Non-Uniform Thickness

Simple support at outside edge.

In this calculation it will be assumed that the thickness is a linear function of r.

$$t = t_B (1 - \alpha \frac{r}{R})$$

For the deflection

$$\omega = W_o \left(1 - \frac{r^2}{R^2}\right)$$

Carrying out the integration

$$D = \frac{Et_B^3}{12 (1 - v^2)}$$

$$U = D_{\pi} \frac{4 (1 + \nu)}{R^2} W_o^2 \left(1 - 22 + \frac{3}{2} \alpha^2 - \frac{2}{5} \alpha^3 \right)$$

$$T = \pi \rho \omega^2 W_o^2 t_B R^2 \frac{1}{6} \left[1 - \frac{16}{35} \alpha \right]$$

$$\omega = \sqrt{\frac{E}{\rho}} \frac{t_B}{R^2} \sqrt{\frac{2}{1-\nu}} \sqrt{\frac{1-2\alpha+\frac{3}{2}\alpha^2-\frac{2}{5}\alpha^3}{1-\frac{16}{35}\alpha}}$$

Calculate an average thickness (by volume)

$$\pi R^2 t_a = \int_0^R t 2\pi r dr = t_8 2\pi \frac{R^2}{2} - \alpha \frac{R^3}{3}$$

$$t_a = t_B (1 - \frac{2}{3}\alpha)$$

Therefore, the percent error by assuming an average thickness is given by the following

percent error =
$$\epsilon$$
 = $1 - \frac{3}{3 - 2\alpha} \cdot \sqrt{\frac{1 - 2\alpha + \frac{3}{2}\alpha^2 - \frac{2}{5}\alpha^3}{1 - \frac{16}{35}\alpha}}$

$$\epsilon = \frac{\omega_{\text{exact}} - \omega_{\text{approx}}}{\omega_{\text{exact}}} \times 100$$

error based on average thickness

$$t_a = (1 - \frac{\alpha}{2}) t_B$$

error based on thickness giving same volume

$$t_a = (1 - \frac{2}{3} \alpha) t_B$$

(5) Effect of Hub Mass (simple support)

For this problem, the hub mass is added to the kinetic energy term

$$T = \rho t_{\pi} \omega^{2} W_{o}^{2} R^{2} \frac{1}{6} + \rho_{\pi} R_{h}^{2} d_{h} \omega^{2} W_{o}^{2}$$

$$\omega = \sqrt{\frac{E}{\rho}} \frac{t}{R^2} \sqrt{\frac{2}{1-\nu}} \sqrt{1+6\frac{d_h}{t} \frac{R_h^2}{R^2}}$$

$$\frac{f \text{ (with hub)}}{f \text{ (no hub)}} = \frac{1}{\sqrt{1 + 6\frac{d_h}{t}\frac{R_h^2}{R^2}}}$$

I

$\label{eq:appendix} \mbox{\sc appendix B}$ Photoheliograph weight calculations

750-13

APPENDIX B

PHOTOHELIOGRAPH WEIGHT CALCULATIONS

F. Bonwit

With the completion of a satisfactory telescope layout and the detailed design of certain critical components (such as the primary mirror, launch locks, etc.), it became practical to calculate more precise total weight, center of gravity and moments of inertia. The detailed weight calculations, in particular, are needed for initial stress analyses, and have been completed. The other items will follow shortly. The volume and weight was calculated for each component, structural member, fitting, bolt, etc. so that future changes in design or materials may be easily accommodated. Sub-totals are tabulated for comparison with strength analyses to indicated areas where weight savings may be realized. The target weight for the entire photoheliograph, in flight configuration, is 700 lbs. The earlier weight estimate, based on a tubular aluminum housing and a flat primary mirror, was within this limit. However, the new calculated weight is 855 lbs. The increase is partly due to changes in materials and partly to overdesign of primary structural members. Thoughtful redesign, where indicated by stress analysis and testing, should be able to reduce this substantially.

F.H. BONWIT	7-10-68	JET PROPULSION LABORATORY	PAGE 5/5 OF
PREPARED BY	DATE	CALIFORNIA INSTITUT	
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT
STRUCTURAL IN	ITE GRITY	OF COLLAR	ASSY-PRIMARY MIRROR ATM
BEARING INSERT	DES RECOR	IFIENDATION	REF. DWG 10026241
FOR BEARING (CONT.D.		USE M.S.	
A= 50 R= 375 NEW CRITICAL BEARING AREA (PROJECTION): A, = TA for Projection = 3 The project of the project		INVAR COLLAR 50= 196 IN2	BEARING SERT
		MS = For	58000

I

To the state of th

PAGE 5-14 OF ____ JET PROPULSION 7-8-68 IH BONWIT LABORATORY PROJECT STRUCTURAL INTEGRITY OF COLLAR ASSY. - PRIMARY MIRROR-ATM REF. DWG. 10026244 COLLAR SUPPORT MATL. A-286 (6) CLOSE TOL, BOLTS (DS 136-10-13L) ASSUMPTION: FIR TENSION: (6) CLOSE TOL. BOLTS HOLD CLAMPING COLLAR DISC TO COLLAR COLLAR DISC IN INSERT STIDO 63 ASSUME: 50 65 RETAINER (1A) WEIGHT OF M = 75.0 LB F = 160,000 PSI(T6) (3) = 3.0 485 3 EW = 78.0 LBS ULT TENSILE STRENGTH PER BOLT P, = 2,892LBS FOR (6) BOLTS: EP = 6x2,892 = 17,352 LBS DS 136-10-13L(10-32) COLLAR P= 2 W x50 = 78.0 x 50 = 3,900 LBS RETAINER PRIMARY M.S. = 8 PBULT -1 = 17,352 -1 3,45 MIRKOR MATL: 416 STAINL STE REF. DWG 10026241-103 BEARING INSERT (CONDA/QQ763c) \$DWG. 10026261 FOR BEARING ASSUMPTION: ADJUSTMENT SCREW IN SYMMETRICAL ALIGNMENT Pcas15° 4 WITH A.T.M. AXIS BUT IN ECCENTRICITY TO BEARING ADJ. SCREW J. INSERT. (POSSIBLE MIRROR ADJ. Position)

Ab = T d = 785x(375) = 1111 e=~,350 Pras 150 - 3,750 × 9659 = 3622 d = 375 for An = 3622 = 32927PSI FTU = 70,000 PSI; ASSUME Fory = 66/0 FTU = 58,000 PSI M. S. = 1 = 58,000 -1 = .761 LOW! SEE RECOMMENDATION NEW PAGE JPL 0999-1-5 APR 66 CLASSIFICATION 46

PAGE 5-13 OF ____ JET PROPULSION FH. BONINIT LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PROJECT INTECKTY OF COLLAR ASSY. - PRIMARY MIRROR - A.T.M. REF. DWG. 1002641 SUPPORT COLLAR MATL: A-286 (2) SELF LOCK BOLTS (DS136-31-8L) ASSUMPTION ! LOCK BOLTS - ALONE - HOLD COLLAR SUPPT, TOGETHER (CONSERVATIVE) FER TENSION : Ftu = 160,000 PSI /TG 1/2 cos 150 Vs/2 cos 15 DS 136-31-81 (5/16-24) ULT. TENSILE , STRENGTH PER BOLT 9, =8,590LBS FOR (2) BOLTS 17,180 LBS : EPBULT ASSUME 506' feos 15+ Flos 15 = Pas 15 = Wm x cos 15 x 50 = = 75.0 x,9659 x 50 = 3622 M.S. = PCOS/5° 3622 1:374 P/2 cos 150 Vs/2 cos 15 DS 136 BOLTS ASSUME: "SHEAR"=60%OF FTU = 60 x 160,000 = 96,000 PSI FOR SHEAR: FOR 5-5 BOLT: VSU = 7,290 LBS (SINGLE SHEAR) FOR (2) BOLTS: 21/5=14,580 LBS 2 V5 x cos 150 = Wm x cos 150 x 50 = V5 × 205 15 = WILL X 150 X 50 = 3,622 LBS M.S. = 2V_SU_ / = 14580 -1 = 3.03 (CONSERVATIVE) KEF. UWG. 10026244 PRIM. MIRROR Y COLLAR RETAINER SURFACE FOR BEARING MATL. INVAR'36" SUPPORT COLLAR) Di=4.500 P=(Wm+Ws) x50= [75,0+3.0) x50-3,900 + ABR= 785(Do2-Di2)= Do = 5,100 ; ,785 (5,1002-4.5002) - 4.521N+ fer ABR 3900 - 862.83 PSI For 60,000PSI (SEE PAGE 12) M.S. = Thry = 60,000 = 1 = 68.54 (HIGH) JPL 0999-1-5 APR 66 CLASSIFICATION

			PAGE \(\frac{2}{2} \)	5-/2 of
FH BONWIT	7-2-68	JET PROPULSION LABORATORY		
PREPARED BY	DATE	CALIFORNIA INSTITUTE	REPOR	T NO.
CHECKED BY	DATE	OF TECHNOLOGY	PROJ	ECT
STRUCTURAL IN	ITEGRITY	OF COLLAR ASS	Y PRIMARY	MIRROR-A.T.M.
COLLA	e SUPPO	RT.	REF. DWG.	10026241
COLLAR SUPPORT	IP		MATL: INV	
FOR SHEAK: PRIMARY MIRK	200	Do *	3.950; Di	= 3.625
TRIMARY TITER	1		.435	ASSUME 50G
D.		A.= Do T , h) = 3,950×11×	.635= 7.880,2
Di S		ASSLIME THAT O		
		WITHEUT THE	(10) LAUNC	H LOCKS -
		15 TAKING T	HE ENTIRE	BLAST-OFF
		LOAD OF THE	MIRROR /	ASSEMBLY.
W	FIGHT OF	MIRROR! WM =	~ 75.0	
		×50 = 75.0×50 =		
$f_{s} = \frac{P}{A} = \frac{3.75}{7.88}$				
7.88		Fsu = . 60	Ptu:60 x 65,0	00 = 42,250 131
		M.S. = Fsu -1 = -		
COLLAR SUPPORT FOR BEARING PRESS.	- R	Br. 785 (Do2-	Di2): 1923	1N 2
		P= 3,750	185	
$f_{b_0} = \frac{P}{A_{b_0}} = \frac{3.750}{1.932} =$	1,9 40 PSI FOR STAIN	VL. ST.L. (ANNEALED):		PSI; & 30,000 PS
		R'36 (ANNEALED);		Fi = 40,000 Bi
FOR INVAR 36"	(ANNEALED)	For Fory x F = 3	50,000 4000	60.000 Pc
Mis	- Fory 1- 6	Fory = Fory x Fig = 3	HIGH - CONSER	VATIVE!)

JPL 0999-1-5 APR 66

CLASSIFICATION

POSITION

AFTER BLASTOFF

1/4 "MOVEMENT -"UP"

1/4 MOVEMENT
TOWARD & MIRROR ASSY.

REF. DWG. 10026224

CHECKED BY	DATE	CALIFORNIA INSTITUTE OF TECHNOLOGY	PROJECT
DWG. NO SIZE	TITLE 2ND DIAGO MIRROR AS HOLDER, MIN	55' PROR	
DOCCOCABTT 1456. SCOL	PAD MIRRO TOP PAD MIRROR ADJ. PLA ADJ. SCR. HOUSIN	TE	
22 5	HOUSING	15 ASSY. ASSY	

CLASSIFICATION

JPL 0999-1-5 APR 66

WEIGHT OF BELIOWS AND 6.5 0D, FLANCE WEING IN $F = .992185$ $R_S = W \times 50 = .992 \times 50 = .12.4 \times 185 \text{ for}$ $FACH OF (4) SCREWS$, MAX. TENSILE STRENCTH '130 185 POR EACH MS-51957 SCREW HS 51957-29 ALLOWABLE SHEAR LOAD: $R_S = .6 \times 30 - 438 \times 185 \times 1498 \times 1200$ $R_S = \frac{1}{12.6} - 1 = \frac{438}{12.6} - 1 = \frac{33.7}{12.6}$ EVD CONVOLUTION OF BELLOWS FOR SHEAR: THICKNESS OF CAPSULE MATERIAL: $t = .007$ (THICKNESS OF CAPSULE MATERIAL: $t = .007$ (THIC	F. N. DONWIT PREPARED BY			PAGE 5-// OF
Scheins MS 51957 - 28 FOR SHEAR	STRUCTURAL IN	TEGRITY OF 2"	DIAGONAL	ASSY A.T.M.
Willy $W_{\rm f} = .992$ LBS $R_{\rm s} = W \times 50 = .992 \times 50 = 12.4$ LBS FOR $R_{\rm s} = W \times 50 = .992 \times 50 = 12.4$ LBS FOR $R_{\rm s} = W \times 50 = .992 \times 50 = 12.4$ LBS FOR $R_{\rm s} = W \times 50 = .992 \times 50 = 12.4$ LBS FOR $R_{\rm s} = W \times 50 = .992 \times 50 = 12.4$ LBS FOR $R_{\rm s} = W \times 50 = .992 \times 50 = 12.4$ LBS FOR $R_{\rm s} = W \times 50 = .992 \times 50 = .992 \times 100$ $R_{\rm s} = 1 = .992 \times 100$ $R_{\rm s} =$	SCREWS (MS 5193) FOR SHEAR;		RE	ASSUME 5065
EACH OF (4) SCREWS. MAX. TENSILE STRENCTH 1/30 LBS PER EACH MS-51957 SCREW HIS SIGN: -29 ALLOWABLE SHEAR LOAD: $P_{SU} = .6 \times 730 - 438$ LBS (APPROX.) M.S. $\frac{P_{SU}}{R_S} = 1 = \frac{438}{12.6} - 1 = \frac{33.7}{12.6}$ EVD CONVOLUTION OF BELLOWS FOR SHEAR: THICKNESS OF CAPSULE MATERIAL: $t = .007$ (THICKNESS OF CAPSULE MATE. $t = .007$ (THICKNESS OF CAPSULE MA	₩ × × × × × × × × × × × × × × × × × × ×			AND 6,5 O.D. FLANGE
EACH OF (4) SCREWS. MAX. TENSILE STRENCTH 1/30 LBS PER EACH MS-51957 SCREW EACH MS-51957 SCREW MISSIGN -29 ALLOWABLE SHEAR LOAD: $P_{SU} = .6 \times 730 - 438$ LBS (APPROX.) MIS. $P_{SU} = 1 = 438 - 1 = 33.7$ EVD CONVOLUTION OF BELLOWS FOR SHEAR: THICKNESS OF CAPSULE MATERIAL: $t = .007$ (THICKNESS OF CAPSULE MATE. t		R. = WYS	0 = 992 × 50 =	12.4 LBS FOR
MAX. TENSILE STRENCTH 1/30 LBS PER EACH MS-51957 SCREW MISSIGN -18 ALLOWABLE SHEAR LOAD: $P_{SU} = .6 \times 730 = 438 \text{ LBS (APPROX.)}$ MISSING OF WELD FOR SHEAR: THICKNESS OF CAPSULE NATERIAL: $t = .007$ (THICKNESS OF CAPSULE MATE. $t = .0$		4		
MISSIGN -: ALLOWABLE SHEAR LOAD: $P_{SU} = 16 \times 730 - 438 \perp BS$ (APPROX.) MISSIGN -: ALLOWABLE SHEAR LOAD: $P_{SU} = 16 \times 730 - 438 \perp BS$ (APPROX.) MISSIGN -: ALLOWABLE SHEAR LOAD: $P_{SU} = 12.6$				NETH 730 LBS PER
$M.S. = \frac{P_{SU}}{R_S} - 1 = \frac{438}{12.6} - 1 = \frac{33.7}{12.6}$ $END CONVOLUTION OF BELLOWS$ $FOR SHEAR!$ $\frac{1}{12.6} = \frac{1}{12.6} = \frac{1}{12.6}$ $\frac{1}{12.6} = \frac{1}{12.6} = \frac{1}{12.6} = \frac{1}{12.6}$ $\frac{1}{12.6} = \frac{1}{12.6} = $		EA,CH	MS-51957 SCRE	W
END CONVOLUTION OF BELLOWS FOR SHEAR! THICKNESS OF CAPSULE MATERIAL: $t = .007$ (THICKNESS OF CAPSULE MATE. $t = .007$ (THICKNESS OF CAPSULE MATE.) $t = .007$ (MS 51957-28 ALL		0	
$\frac{t=,007}{(THICKNESS OF CAPSILE MATI.)} We 16HT OF BELLOWS: Wg=,751BS $ $l=ID\times \pi = 4\times \pi ; A = l*_{iw} 4\pi . 01 = .126$ $V = \frac{P}{2}; P = \frac{1}{2}W_{2} \cdot 50 = .5\times .75\times 5018751BS$ $fs = \frac{P}{2A} = \frac{18,75}{2\times .126} = 74.40 - PSI $		IIV ' (90) Y	OTAL ASSU	ME WELD THEEKNESS
$V = \frac{P}{2}; P = \frac{1}{2}W_{8} \le 0 = .5 \times .75 \times 5018,75 \perp 185$ $\int_{S}^{1} = \frac{P}{2A} = \frac{18,75}{2 \times .126} = .74.40 - PSI \qquad MATL. STAUNLESS STL.$ $\int_{S_{0}}^{1} = .6 \times 80,0000000 = .45,000$ $VATURAL FREQUENCY OF BELLOWS;$ $\int_{N}^{1} = \frac{1}{2\pi} \frac{1}{N} \frac{1}{N} = \frac{1}{N} = \frac{48,000}{74.4} - 1 = \frac{644.2}{74.4} \frac{1}{N} = \frac$	t=,007 (THICKNES	SS OF CAPSILE MATL.	И	
$f_{s} = \frac{P}{2A} = \frac{18,75}{2 \times 126} = 74.40 - PSI $				
$f_{s} = \frac{P}{2A} = \frac{18,75}{2 \cdot 126} = 74.40 - PSI $	$V = \frac{P}{2}$; $\frac{P}{P} = \frac{1}{2}W_{R}^{2}$	50 = ,5x .75 × 50 .	18,751BS	
NATURAL FREQUENCY OF BELLOWS; $f_{N} = \frac{1}{2\pi} \sqrt{\frac{K}{m}}$; $K = 22$ (FRIM CATALOG) $M_{S} = \frac{F_{SU}}{f_{S}} - 1 = \frac{48.000}{74.4} - 1 = \frac{644.2}{74.4}$ $M_{S} = \frac{1}{2} \sqrt{\frac{K}{m}}$; $K = 22$ (FRIM CATALOG) $M_{S} = \frac{1}{2} \sqrt{\frac{K}{m}} = \frac{48.000}{74.4} - 1 = \frac{644.2}{74.4}$ $M_{S} = \frac{1}{2} \sqrt{\frac{K}{m}} = \frac{1}{2} \sqrt{\frac{1}{2}} = \frac{16.95}{16.95}$ CPS Assume No G			MATL, STAUNLESS S	
m = WB = 75 - 00194 : f = 1 1 22 = 16.95 CPS ASSUME NO G	C / 3		$M_s = \frac{F_{su}}{I} - I$	
1 386	m = WB = .75 - 00194	f. 1 1/22	= 16.95 CPS	ASSUME NO G
M E 1 JN 28 9,7 × 10-2 x 6,22 (1 - 10-2 x 6,22	Jan fr = 1 x V 192 x EI m e 2	f= 1.84 : M= . 194 × 10 3	50=9,700; E=30×10; × 16,95 = 64025	ASSUME: 50 G

PAGE 5-10 OF ___ JET PROPULSION FH. BONIUIT 6-21-68 LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY STRUCTURAL INTEGRITY OF 2ND DIAGONAL ASSY. - A.T.M. REF. DWG. 10026213 MIRROR HOLDER THIN WALL OF MIRROR 18) THIN WALL HOLDER FOR SHEAR (BELOW MIRROR ADJ, SCREWS e = .7 PORTION/ CONSIDER LOWER PORTION IRROR OF HOLDER A CANTILEVER HOLDER. BEAM - OF INVERTED (M) HOLDER CHANNEL SHAPE, LOWER PORTION OF MIRROR MASS CAUSING A BENDING MOMENT: Mm, = Pxe Mm, = 6.1 x.7 = 4.27 ASSUME 50G" SECTION "A-A" Io Ad Ad ITEM AREA W = .305 LBS; WM, = .40 x,305 = 122 LBS 4x,406 .1624 ,203 0330 .0067 .0022 2 3.0×/87 . 5610 .313 .1756 .0550 3 4×406 .1624 .203 0330 .0067 P=. 122 x 50 = 6.10 LBS .0022 ZA .8858 .2416 .0684 .0044 Mn = 6.1x.7 = 4.27 INLBS X = EAD = 2416 = 2727 . X = 074 I= T+EAd2- EAX= ,0044+,0684-(8858x .074) = ,0073 IN 1 T . C 4.27 . 2727 = 159, 51 PSI Fty = 42 000 PSI M.S. = Few -1 = 42000 -1 = 262 (HIGH)

PAGE	5 -	. G	^-	
PAGE	. , , -	7	OF.	

F H + 1/1/17 6-20-68

PREPARED BY DATE

STRUCTURAL INTEGRITY OF 2ND DIAGONAL ASSY. - A.T.M.

HOUSING

REF. DWG 10026721

SKEW (SIDE WALL) PLATES WITH ALL EDGES CLAMPED FOR LIMIT BUCKLING LOAD;

$$\eta = 1.0 \ | d = 23^{\circ}$$

$$\alpha = 5.7 \ | b = 4.2$$

$$E = 10 \times 10^{\circ} PS \ | t = .09$$

$$N_{CR/\eta} = K \frac{\pi^{2}D}{b^{2}} \ | D = \frac{E \times t^{3}}{12(1-\eta^{2})} = \frac{10^{7} \times [.09]^{3}}{12(1-3^{2})} = \frac{10$$

[FIND"K" FOR \frac{9}{6} = \frac{5.7}{4.2} FROM NORTHROP

STRESS MANUAL CURVE 304, 4-1 : 8.8

$$N_{CR/10} = \frac{8.8 \times \pi^2 668.50}{(4.2)^2} = \frac{3291.2 LB5}{(4.2)^2}$$
 FOR EA. WALL)

WO, WEIGHT OF TOTAL 2ND DIABONAL MIRROR ASSEMBLY, INCL.

BELLOWS MINUS HALF OF HOUSING = 5.304 - 1.265 = 4.039 LBS

50'G's

$$M.S. = \frac{2N_{CR}}{P_D} - 1 = \frac{3291.2 \times 2}{186.5} - 1 = \frac{34.3 (HIGH)}{1}$$

(2) 3/8 "FILLET WELDS FOR ALLOWABLE LOAD PALL

P= Wo x50 = 5304x50 = 265.201Bs

LENGTH OF THROAT(S); T = . 375 x . 707 = , 265

SHEARING STRESS: V = P: (2 x 4.5 x, 265) - . 42 PM

BENDING STRESS: fo = (Px 9: 2x4.5x.265 = 5.59*P

f= VV2+fb2 = 11,300 PSI=V.42+5.59 xP==5.61P

P = 2,016 LBS

M.S. = PALL -1 = 2.015.7 - 1 = 6.60

CHECK WITH) P = 16,000 DL 16,000 x.375 x 4.5 FORMULA: \ Au \ \frac{1+ (6 \in)^2}{4.5} = \ \(\frac{1+ (6 \in 10)^2}{4.5} = \) D=,375 (WELD)

			PAGE 5-8 OF
F. H. BONWIT	6-19-68	JET PROPULSION - LABORATORY -	
PREPARED BY	DATE	CALIFORNIA INSTITUTE	REPORT NO.
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT
STRUCTURAL	IN TEGRIT	TY OF 2 NO DIAG	SONAL ASSY A.T.M
	HOUSIN	16	REF. DW 3. 10026221
<u> </u>	<i></i>		ASSUME 50"G"
ADT.	WEIGHT O	OF 2NBDIAG. AS	SSY, INCL. MIRROR,
	HOLDER, F.	PAD, ADTUSTMT, A	PLATE ETC .: W=1.682.185
		V= P = 50W =	50 × 1.682 - 84 185
		6-32 (Ms.	51957) - 14, N. TENS = 730LO OR 80,000 PSI
6-MIRROR FASTEN SCREWS - FOR SHEAR	-	TAINL, STL. FSUBOIS.	APPR. 60% Ftu= . 6 × 80,000 = 48,000
		Psu = 16	× 730 = 438 LB5
	UP BI (6) 50		
Vs 45 - 4	14 2Bs	FOR EACH SCRE	EW
		$M, S_i = \frac{K_{SU}}{V_{S_i}}$	14 = 30.1 [4]64
FREE END OF MIRROR ASSY			REF. DWG, 1002622
FOR ITS NATURAL FREQUE	NCY	CONSIDER TH	E FREE END (LENGIH'L
· · · · · · · · · · · · · · · · · · ·	n of		CANTILEVER BEAM
	And the second of the second o		
			ONE END TO THE
		TUSTMENT PLAT	E= /U,Y/U PSI
WATER WITH		FREQUENCY IS;	
	J=27/-	m l3, WHERE;	l=~ 2.00; E= Eq. + Em = /6
			0 = .4 × 1.325 × 50 = 26,516
$m = \frac{w}{g}$	= 26.5 = 06	.	$\int = \frac{1}{2\pi} \sqrt{\frac{3 \times 10.25 \times 10^6 \times .1365}{.0685 \times 2.0^3}} =$
	12 = 1365		VSERVETIVE) - 440.5 CPS.
SECT. A-A Y CLASSIFICATION		54	JPL 0999-1-S APR

Ď

O

● 大きないできる。 大きないできる。

٦	14.	Bo	X/h	17	
					_

T

6-18-68

ET PROPULSION

REPORT NO.

C

OF TECHNOLOGY

PROJECT

STRUCTURAL INTEGRITY OF 2ND DIAGONAL ASSY, - ATM

REF. DW610026224

ASSUME 50 G"

CONSIDER AS A CANTILEVER, BEAM (BOX SHAPED WITH CONCENTRATED LOAD"P,"AT FREE END

P.= 1.414P=1.414Wpx 50=1.414x 5304x50= 375 LBS

MMA. = PE = 375-x 10 = 3,750 IN LBS

a= 4,0 , b= 5,0 , t= ,090 (TYP.)

WALLS FOR BENDING

$$f = \frac{G}{2} = 2.0$$

$$f = \frac{Mc}{I} = \frac{3.750 \times 2.0}{4.40} = \frac{1.710 \text{ PSI}}{1.710 \text{ PSI}}$$

1 5.0.09 .45 .045 .020 .000 2 3.82 × .09 .34 2.0 .68 1.36 3 5.0 × .09 .45 3.955 1.780 7.04 4 3.82 × .09 .34 2.0 .68 1.36 1.58 3.16 9.76

 $\bar{X} = \frac{2AD}{2A} = \frac{3.160}{1.58} = 2.0, \ \bar{X} = 4.0$

I = I + EAd = EAX = .96 + 9.76 - (1.58 × 4.0) = 440 114

Ftu (6061-TCAL.

M.S. = Ftu -1 = 42,000 -1= 23.6 (HIGH)

		_ ,
	JET PROPULSION	PAGE <u>5-6</u> OF
F.H. BONINT PREPARED BY	G-18-68 LABORATORY -	REPORT NO.
CHECKED BY	CALIFORNIA INSTITUTE OF TECHNOLOGY	PROJECT
TITLE	-2 ND DIAGONAL ASSY, -	ATM
		REF. DWG. 10026224
7101357	NG R= 9.25; a = 3.8	ASSUME 5065"
1/1/	P	ASSUME SUG
	TOTAL WEIG	SHT OF ASSY. + W=5,304#
	CONSIDER, AS A CA	ANTILEVER BEAM
e	WITH A CONCENTRATED	LOAD "P" AT FREE END
$R_{\rm g}$	P= W ×50 = 5.7	14 x 50 = 265, 20 185
A A	My Pl = 265,2x	
r q -		400
BASE SCREWS FOR TENSIO		
(#8-32)-T-6 (160Ks1) (8	A REACT TO MMAX; M	MAX = R × a (PRYING-OFF) MOMENT
R ₈ = 1	$\frac{M_{MAX}}{a} = \frac{2,430}{3.8} = 640 \text{ for } R_{y}$	320 FOR EACH SCREW)
	F = LLT. TENSILE STRE	NGH: 1,957185
	$M.S. = \frac{F_{ULF}}{R_{B_1}} - 1 = \frac{195}{32}$	57 -1 = 5./2
THIS EXCEEDS TE	NSIQNAL" M.S. a= 2.0 PLUS "18.	RATION OR FATIGUE
M.SOF 2.5 OR TOTA		
SCREWS FOR SHE	FAR	
RESISTED BY AT LEAS	For #8-32 SCREWS)	STRENGTH; 2,007 FOR 5-4-95.000 PM
(2) SCREWS (CONSERV)	ATIVE)	
R=12V=1326	<i></i>	2,007 -1 = 14:1 (HIGH)
	56	

JPL 0999-1-5 APR 66

1 All

PAGE	<u>S</u>	-5	OF	
------	----------	----	----	--

F. H. BONWIT 6-17-68

JET PROPULSION LABORATORY

FREQUENCY OF 2ND DIAGONAL

REF. DWG, 10026224

TO FIND FREQUENCY OF VIBRATION OF 2ND

DIAGONAL CONSIDER THE TWO SIDE WALLS OF HOUSING (BACK AND FRONT-OUT OF THE PLANE ON SKETCHY AS A LIGHT CANTILEVER BEAM OF LENGTH "" UNDER A CONCENTRATED LOAD P" STATICAL DEFLECTION IS A - PL3; THEN

R=P=3EI

THE NATURAL FREQUENCY THEN IS:

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{3EI}{h_1 \ell^3}}$$

ASSUME: NO "s"

WHERE: $l = \sim 10.7$; $E_{AL} = 10 \times 10^6 \text{ ps.}$ $P = W \left(TOTAL HOUSING \right) = 5.304 LBS$ $m = \frac{W}{g} = \frac{5.304}{386} = .014 LBS = SEC^2/N$; $d = \sim 5.0$; $b = 2t = 2 \times .09 = .18$;

$$T = \frac{6d^3}{12} = \frac{1.8 \times 5^3}{12} = 1.88 \text{ in}^4; \qquad f = \frac{1}{2\pi} \sqrt{\frac{3 \times 10 \times 10^6 \times 1.88}{.014 \times (10.7)^3}} = 288.67 \text{ Cyc/sec}$$

PAGE WA-/ OF _ JET PROPULSION FHEONIUIT 6-7-68 SECONDARY MIRROR - ATM WEIGHT AN ALYSIS TIE WLES EW. 2 3)4 4.7 × 1.5 × 3.2 × .098 = 1.105 2 33 4.7 × 1.5 × 4.4 × 098. 1.52 7.0 3,263 34,36,38,40 N2122028 R= [2.5×11.0 ×.10×5.5 + (11.0× 4.5×.1×733)]x.291= 4 - 2 4.7 × 1.5 × 3.2 × .098 4 6 6.5 × 1.5 × 5, 1 × .09x 2,437 R34,36,38,40 = 88011 3,542 2.437 6.5 x 1.5 x 5.0 x . 098 = 2,390 6-8 6.5 × 1.5 × 4.8 × .098 2,295 4,732 16 14 6.5 × 1.5 × 5.0 × . 698 = 2.390 8-6 65×1.5 × 4.8 × .098 = 2.295 16 18 1.75 × 1.5 × 3.2 × .098 4.7 x 1.5 x 4.0 x,000 1,381 2.802 3 676 10 -8 4.7×1.5×4.0×.098 = 1.381 18 -20 4.7 × 1.5 × 51 × .098 1.760 2.218 10-12 4.7 × 1.5 × .6.4 × ,098 2.172 18 3.599 <u>(13</u> 20-18 4.7 × 1.5 × 5.1 × .098 12-10 4.7 × 1.5 × 6.4 × , 098 2.218 12-14 6.5 × 1.5 × 6.2 × .098. = /208 2.960 12-36 .638 .638 3.606

PAGE	WA-2	OF	
	كالمستقلة	•	

F. H	BONWIT
	PREPARED BY

6-10-68 DATE JET PROPULSION LABORATORY

REPORT NO.

CALIFORNIA INSTITUTE

CHECKED BY DATE OF TECHNOLOGY

SECONDARY MIRROR ATM ANALYSIS -WEIGHT TIE W EW ≤W TIE W 33-32 210 20 4.7 × 1.5 × 3.5 × .098 .643 1,208 33 2 2, 28 22 65 x 1.5 x 5.0 x .098 4.7.×1.5 × 4.4 × 1098 1.520 2.390 2,163 3,598 33 21 22-21 342 . 880 65 x 1,5 x 5,0 x . 098 2.390 22-24 1/4 SECONDARY MIRROR 1.398 1/4 Wsm = 5,592/4 2,622 5.012 22 2.278 34 36-12 24 20 22 ,880 4.7 × 1.5 × 3.3 ×.098 36-42 4 Wsm = 5,592 1.398 2,278 36 3762 24 38-20 .880 38-42 14 Wsm = 5,592/4 1,398 26 128 47 V 1.5 x 6.4 x .098 2,278 2.211 38 40-28 880 26 3.351 1, 398 48-42 278 40 28 30 2.970 1/4 WSM = 5.592/4 42434 1,398 1 15. 638 28-40 42-36 1.398 5819 28 30-28 1398 42-38 30 32 1.398 6.5 x 1.5 × 4.9 x.098 42-40 2.340 5.592 42 5310 30 44 46 6,5 x 1,5 x 4,9 v,098 48 2.340 No 50 32 33 WT. 643 1,75 × 1,5 × 5,0 × , 098 52 54 2983 56 32

PAGE	WA-3 OF	:
LAGE		

O

6-11-68 DATE

JET PROPULSION LABORATORY

REPORT NO.

REPARED BY DATE

CALIFORNIA INSTITUTE
OF TECHNOLOGY

PROJECT

TITLE W/	EIGHT ANALY'SI	S	Hous	SING	TRUSS	ATM	
TIE		WLBS				WLBS	E WLBS
60-68	25 TURING RING WE = 10.0			74-72	(20.3°); .056 × 10.0	.28	
	0417:10.0 =	. 21		74-172	(24.7) ; $\frac{24.7}{360} = .069$,35	
1/n-352	:15°): ,047×10.0	,21			.069×10.0 =	, 55	/ 2
60	—		42	74		•	. 63
68-70	60 = 60 = . 166) TUBE RING WIT	•		172-74	(24.7°); .069×10.0	,35	
!!!				-	10 TUBE DIAG. 44		: · ·
2 <u>4</u> 68=60	· ·	/.37 ,21.			1" TUBE DIAGE 44 2" TUBE FITTE DOUBLE	a) 1,37	
68-88	1" TUBE DIAG : (44) =	,22.		172-76	(450) ; $\frac{45}{360}$ = .125 .125 × 10.0	.63	
68-90					2		2.79
68		/	2,85		125 ×10.6	/2	2./ /
25 70-68	(60°)-2" TUBE RING; 166×16	.83		16-172	(45°) .125 ×10.0	63	
70-72	2" 74BE FITTG. (Double)	1.37		16-78	(5°); .0417 ×10.0	.21	
· ~	i 2			76			,84
70-86	1" F TUBE DIAG. (44)	.22		78-76	(15°) .0417×10.0	,2/	
70 -88	1" TUBE DIAG : 44	.22	0 2	78-80	(60°) .166×10.0	,83	
(5)			2.8		2"TUBE FITTING (DOUB	UE) 1,37	
72-70	(15°); .0417 × 10.0	.,21		78-96	1'4 TUBE DIAGL. 44	,22	
72-74	$(20.3^{9}); \frac{20.3}{360} = .056$	•		11	100 TUBE DIAGL. 44	,22	
	.056 ×10.0	.28		78			2.8
72			.49				
74 [©] 72	(20.3); .056×10.0	.28					
74-17	2 (24.7); 24.7						
CLASSIF	ICATION			60		JPL	0999-1-5 APR

PAGE	WA-4	OF	
------	------	----	--

FH	BONWIT
	PREPARED BY

JET PROPULSION LABORATORY

REPORT NO.

CALIFORNIA INSTITUTE OF TECHNOLOGY DATE CHECKED BY

PROJECT

	CHECKED BY	DA			HNULUGY	PROJECT	
WE	IGHT ANALYSIS	- HOL	15ING	Teu	ss - ATM	· · · · · · · · · · · · · · · · · · ·	
TIE		WLBS	>WLBS	TIE		Wess	E Wies
80-18	160°; .166 × 10.0	.83		170-94	(23.7°) .066×10.0	, 33	
	1 y TUBE DIAGL. 44	,22		170-352	$(30^{\circ}), \frac{30}{360} = .083$,42	
88-92	1 PTLIBE DIAGI 44	,22		170			75_
	2"TUBE FITTG DWBL	1.37		352-60	(15") 10417 × 10.0	,2/	
80-82	(15°), .0417×10.0	.2/			1"9 TUBE SPAR - 426	.22	·
80			2.85	352-170	(30°); .083 × 10.0	,42	
82-80	(15°); .0417 × 10.0	.21		2 52	1"TUBE FITTE, (SINGL	E) 1,25	2,10
82-354	(15°) . C4/7 x10.0	. 2/		352	WT. OF 1" & TUBE RING = 37 (30°) 1083×3,73	3 4	2,70
82			.42	11 —	, –		
21) 3 54 -82	(15°) .041) ×10.0	.2/		96-172	1"TUBE DIAGL. 44	1.22	
35409	1" TUBE SPAR 426	22,		(45)	I "TUBE FITTING (DOUBL	1,32	
					/"TUBE DIAGI. 44	.22	
J54-04	(6,3°) 360 = 0175	,09		96 94	(60°); 166 × 3.73	.3/	
	1"TUBE FITTING SINGLE	1.25		96-106	1"TUBE DIAGL. 673	,34	
354			1.77		I"TUBE FITTE DOUBLE	A	
84=35	4 (6.3°) .0175 =	.09		96-104	I TUBE DIAGL 673	.34	
84-17	(23.7°); 23.7 360066			_	(PIVOT YOKE ETC.)	9.92	
	2	,33		96			14,14
84	A 10.75		.42				
	l=10.75	PIVOT & PIVOT	PARTS		P ₁ P ₂	b _	8.56 33%
	· Rv		25.76 33%: 856*	R,	7.20	N EP	1700 6676 25.52
	P ₂		66%:1700 Wr	D = F	3 x 2.75 + P.7.00 (17.0)	275 + 85	×7.00) Ba
R	1 PA			7,	10.75 + P.7.00 = (17.0)	10.75	
CLASSI	FICATION			61		JPL	0999-1-5 APR

PAGE WA-5 OF. REPORT NO.

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY CHECKED BY DATE

PROJECT

WEIGHT ANALYSIS	- HOU.	SIN/G	TRU	SS - ATM		
TIE	WIBS	EWLBS	TIE	and the second s	,	
94-96 (60') 166.3,73	, 31		248		, 15	,15
14-78 1"TUBE DIAGL. 44:	, 22		250	HEAT DUMP MIRROR		1.91
· I"TUBE FITTG (DOUBLE)			90-240	(30°) 1083 × 373 + 1,26	,48	
94 80 1" TUBE DIAGL. 144	. 22		989352	1 TUBE SPAR 1426	,22	
94-92 (60°) .166 × 3.71	,31		903968	1" TUBE DIAGL. 44	.22	
942/04 1 TUBE DIAGL. 623	.34		, .	1"TUBE FITTE. (DOUBLE	1,32	
1 TUBE FITTE DOUBLE	1.32		90-100	I"TUBE DIAGE 623	. 34	
94-102 1" TUBE DIAGL. 673	,34		,	1"TUBE FITTE. (DOUBLE)	1,32	
	4.38	4,38	90-110	/"TUBE DIAGL 673	,34	
92-94 (60°) . 166×3.78	.3/		90-88	(60°) . 166 × 3.73	. 3/	
92-80 1"TIBE DIAGL 44	.22		90			4,55
1'TUBE FITTE. (DOUBL	1.32		88-90	(60°) 1166 x.3.73	-31	
92-39 1" TUBE SPAR :426	.22		88-68	1" TUBE DIAGL44	.22	
92-240 300, 1083+3,73 + 121	48			1" TUBE FITTE, (DOUBLE)	1,32	
92-102 1 TUBE DIAGL. 673	.34			1"TUBE DIAGL. 144	1	-
1"TUBE FITTE DOUBL			88-110	I "TUBE DIAGL, 673	.34	
92-10 1 TUBE DIAGL. 673	.34			1 TUBE FITTG DONE		
92 240-92 (30°) 1083×3,73	15	4.55		I TUBE DIAGL, 673	.34	
240-90 (30°) 083 × 3.73	.15		88-86	(60°) .166 × 3.23	,31	
MIRROR SUPPT. YOKE 1.24			88			4,38
240		.73				
CLASSIFICATION		1./3	62		1	0999-1-5 APR

JET PROPULSION FH. BONINIT ABORATORY REPORT NO. CALIFORNIA INSTITUTE **TECHNOLOGY** PROJECT Z Wiss 26-88 (60°) .166 × 3.73 56-70 1"TUBE DIAGL. 44 .22 1"THEE FITTE, (DOUBLE) 1,32 86-172 1 TUBE DIAGL. 44 86-100 1"TUBE DIAGL. 673 .34 1" TUBE FITTE DOUBLE 1.32 86 18 ITUBE DIAGL. 673 .34 86-182 (30°) 1083 × 3.73 .15 182-96 (300) 0832-3.73 ,15 30 182 100-10 (60°) · 166 × 3.73 .3/ 100-110 (60°) 166 × 3.73 1"TUBE FITTE, (DOUBLE) 1.32 1 100-92 1"TUBE DIAGL: 673 100-14 1" TUBE DIAGI .62 100-90 1" TUBE DIAGL 673 1"TUBE FITTE COURSE 1,32 180-124 / TUBE DIAGL :673 4.62 100 CLASSIFICATION

63

PAGE WA-6 OF_

JPL 0999-1-5 APR 66

FH. BONWIT PREPARED BY		0-7-68 DATE	JET PROPULSION LABORATORY CALIFORNIA INSTITUTO OF TECHNOLOG	ON	REPORT NO.
SIRESS A	NALYSIS-	MOUN	TING OF	PRIMARY	MIRROR (CONT
	R _B P R _B		R _B = 46.37LBS R _{BNH}	RBAY = RBN	034 51Nd = R _B 51Nd x Co 1045 x , 94452 = 482 LBs
1375		3900R	TENSION;	SIND = R	353 0-353 0.7 -4.82 LBS BNH; T- RBNH 5/NB
B A.R	BNW				
CLASSIFICATION			64		

The second secon

•			PAGE <u>53</u> of
FH. BONWIT	6-6-68	JET PROPULSION	
PREPARED BY	DATE	- LABORATORY —	REPORT NO.
	DATE	CALIFORNIA INSTITUTE OF TECHNOLOGY	PROJECT
CHECKED BY			
STRESS ANALYSIS	- MOUNTIN	G OF PRIMARY. 1.	IRRCR.
Re	**************************************	P_2	> ₹ R _B
		1	Λ ,
	R _A	$D_{i} \rightarrow R_{A}$	D = 4.0 D, = 3,6
PRIMARY	MIRROR	D	D2 = 26.0
		P	D3 = 25.6
$\mathcal{R}_{\mathcal{B}}$		NIPPOR	RETAINED BY 2 AMNULAR
	D_{1}	AREAS:	11.777,022 01,277,111022
	x=6°	@SPLIT RI	NG OF MOUNTING CELL
	+	- BRAL	KET) A = (D-D,2) v. 785 = A = (4.0 - 3,62), 285 = 2391N2
		MIRROR	
		a (12) MIR	RROR GRIPS OF SUPPORT
LAUN	CH	a= 2.25, R.	$R_3 = \frac{D_L}{2} = 13.0$; $R_3 = 12.8$
LOCK (MIRROR GRIP)	
A.		$\frac{2}{R_3}$	$= \frac{1.375^{-1}}{12.8} = \frac{1075}{2} \times = 6.12^{\circ}$ $d = 12.24^{\circ}$
	<i>x</i>	2	
		P3 (a	$A_8 = \frac{12.24 R_2^2 - R_3^2 \pi}{360 R_2} = .5.51 / 10^{-5.16}$
			EAB=12(AB)=12×551=6,621A)2
	P=10 WM = 1	757,0 LBS = ERA+12K	WEIGHT OF MIRROR) WM = 75,7285
	ERA+12BB AA	$\frac{AB}{+12AB} = \frac{6.02}{239+6.62} = \frac{7}{7}$	735 $R_A = .265 \times 757.0 = 200.6$
	$R_B = \frac{17}{12}$	$+12A_{B}$ 239+6.02 -235_{-X} $\approx R_{A} + R_{B} = \frac{.73}{.22}$	= x/5/.0 = 46.31 LB3
CLASSIFICATION '		65	JPL 0999-1-5 APR 66

I

The second

The state of the s

	F, H. ECIWIT	6-6-68 DATE	JET PROPULSION LABORATORY	PAGE 5 2 OF
			CALIFORNIA INSTITUTE OF TECHNOLOGY	
6 73 .	CHECKED BY	DATE		PROJECT
				(PRIMARY MIRROR)
	PEACTION ON RING	E LEDGE	9	(CONT'D.)
	!	\ '		ASSIME
(*)			Company to the Company of the Compan	1065
				7.
	K			P-1166,4 LBS
U				
\mathbf{G}	R=P= 1,166.4 LB	5 . 583,2	LBS - TO BE D	ISTRIBUTED OVER
	2	,		3
	(3) TRUSS "FACES"	EACH: A	T = 1.0 × .6 = .61	FOR INVAR
	$f_c = \frac{R}{3A_T} = \frac{58}{3}$	3.2 = 324.	0 PS1	FOR INVAR:
	Je 3/17 3 x 1	.6		
Tark			<i>M</i> .	$S_{,=} = \frac{F}{f} - 1 = \frac{40,000}{324} - 1 = 141614$
	A PRINCIPLE OF THE PRIN			
art)				
U				
U				
(J)				

JPL 0999-1-5 APR 66

CLASSIFICATION

1 H. BONWIT PREPARED BY	6-5-68 DATE	JET PROPULSION - LABORATORY - CALIFORNIA INSTITUTE - OF TECHNOLOGY	PAGE S 1 OF REPORT NO. PROJECT
STRESS AN ALYSI	S-BASE M	TOUNTING RING -	- PRIMARY MIRROR
DEFLECTION:			
ASSUME! PAIR OF 7	Durant N	BASE MALLATING PLACE	TO ALT LINE SINGLE
· •			GE TRUSS TO HAVE
	063 E	= 28,0 /= 1	B : I BEANI-SHAPE THE 25 ASSUME:
DASE TITE NING		Y	10 G'
			WM (MIRRUR) 75.7 LBS
P= & W × 10 = 116.	64 x-10 = 1,10	66.4 LBS	EW = WTRUSS + WBASE MTG. COLL PAIR BYACKET!
		11 = 34 2 LRS	PAIR BYALKET
2 21.0 1/0 (2004)	e der j		BYACKET))+WM = 6,74+34,2+75,7=//6.64
A MINGIA	AREA	A d' Ad	Ad Io
1 (K)	1.c x 125	125 .063 .002	8 .0005 -
1 4 1/1 - 1		.20 1.715 .343	. 1
3	1.0×125	125 3.367 .421	1.418 -
		400 775	2006 \$ 50169
X SA	1450	1.715 X2	294, N2
\mathcal{I} :	EIo+Ad2	- EA x = . 169 +	2,0065 450 x 2,94 = .855 1N
$\Delta_{x} = \frac{Pl^{3}}{48EI} =$	1,166,40 × 2 48 × 21.0×10	1.952 16x,855 = .0297 IN	DEFLECTION, IF ONLY
ONE PAIR OF TRU.	SSES 15 A	USED, SINCE, HOW	IEVER, 31 PAIRS AF
			N IS MORE REALISTIC

PAGE 40 OF

LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PROJECT

SECONDARY MIRROR 755 M

SEE PAGES 13,14\$15

ZWAL = 3.03 106	+ 120 FIRST DIAG
054 25	1223 HEAT STOP MIRROR
4,487 <u>1</u> 85 ≥	W=5.192LBS MIRROR

EM = (3.2 × ,282) + d = W+ (12.8 × ,20)+ (13,3 × ,223) = dx × EW

=(3.2×.282)+(5.68×4.487)+(12.8×.20)+(13.3×.223)= =dx 5.192

$$= .9 + 25.5 + 2.56 + 2.96 = 31.92 = 6147$$

$$5.192 = 5.192 = 6147$$

HEAT STOP M. DIAGONAL , 223 ,20

PAGE 23 OF _ JET PROPULSION **LABORATORY** REPORT NO. CALIFORNIA INSTITUTE OF TECHNOLOGY CHECKED BY PROJECT C. G. CALC. PRIMARY MIRROR 4 . 7.60 $\bar{d} = 5.457$ 6 AREA A 7,25 1 # 26,25 x.5 95.00 13.10 65.30 2 醣 //×1.85×、5 . 10,20 6.40 48.80 3 2.25 × 3.75 8.40 5.80 65,30 6.40 4 # 11.0 x 1.85 x .5 10.20 2.09 5 625 3.35 4.30 9.00 3.975× 3.75 29.70 14.85 2,00 [[28].5+4.85]:25 4.71 7,00 33,70 € 63,55 ≥ 346.80 $d = \frac{\leq Ad}{\leq A} = \frac{346.80}{63.55} = 5.457$

PAGE	2	/	ÒΕ	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			\sim	

F. H. BONNIT 5-14-68
PREPARED BY DATE JET PROPULSION **LABORATORY** CALIFORNIA INSTITUTE CENTER OF GRAVITY CALC. - 2ND DIAGONAL MIRROR ASSY, 10026213 $\frac{16.98 + d_{1}}{16.5} = \frac{2(d_{1}^{3} - d_{2}^{3})}{3\pi(d_{1}^{2} - d_{2}^{2})} = \frac{2(4.5^{3} - 3.96^{3})}{3\pi(4.5^{2} - 3.96^{3})} = \frac{2(91.25 - 6.26)}{3\pi(20.25 - 15.7)}$ d = 2 R = 2(2,250)= 4.50 $dy_{0} = \frac{5850}{42.80} = 1.365; \quad a + dy_{0} = \frac{3100}{42.80}$ $dy_{0} = \frac{5850}{42.80} = 1.365; \quad a + dy_{0} = \frac{3100}{1365}$ $dy_{0} = \frac{42.80}{42.80} = 1.365; \quad a + dy_{0} = \frac{3100}{4.365}$ $dy_{0} = \frac{44.65}{42.80} = 1.365; \quad a + dy_{0} = \frac{44.65}{4.365}$ $d_2 = 2R_2 = 2(1.95)$ =3.96 16 - ,288 d, = ,288 × 4,50 = 1,295 d- (a+R,)-y = 3.100+ 2250 -1,295= 4.055 $d_{36} = \frac{d[A \cdot R + 2K]}{3(2R + 2K)} = \frac{2.6(9.0 + 1.616)}{3(4.5 + 1.616)} = 1.5$ (A26 = a(2R+2K) = 2.6 (4.5+1616) = 7.95 16 3927d,2: 7.95 4.055 3230 Ad 1616x / 38 ,222 .069 0/5 19 1.25 280x,270 ,75% 947 29 1.25 .756 2,80 x,270 34 ,947 .5 × 270 ,135 5 × ,270 .135 3.0 $\bar{d}_{b} = \frac{2 \, A d_{b}}{\leq A} = \frac{4710}{16.70} = 2.79$ 1.785 EA 3789 $d = \frac{\xi AH}{\xi A} = \frac{10.709}{3.789} = 2.83$ AREA Aab dab Adab 3.789 2.83 10.7 098 = 55% 178 = 55% 08 = 45% 2.79 47.2 57.9 AREA 270×198 ,054 .599 0.32 dab = 579 - 28 .138 × 198 · 027 .5 × 5,350 2.675 , 599 ,017 .667 .716 $\bar{c} = \frac{2 A c}{2 A} = \frac{.716}{279} = .26$ 1.55 × 2756 1,512 45 · .276× 4,919

JET PROPULSION F. F. E ~ N N 17 5-31-68 LABORATORY PROJECT WEIGHT CALC. - INDEX & GRAND SUMMARY "A" DENOTES ITEM OR PAGE REVISED FOR LATEST DESIGN IDM I PHIMARY MIRROR 2m - 6m SA JUNITING CILL ERICHET 34.22 7 302,12 113,00 TA BASE NOUNTING PING 15-85 12A SUPPORT LAUNCH LOCK 79.20) 1a-12a 15 CICTNOARY MIRROR ASSY. , 80.41 1d-9d 19 2 ND DIAGONAL HERER ASSA. 5,30 1tp-6tp 26 HOUSING TRIPS SUTPENSION 165,53 1t-4t 28 HOLLING TRIBE FITTINGS 1e-se 31 ELECTRICAL & ELECTRONICS 64.0 10-8c 32 CAMERA, - VIDICON CLUSTER & RACK 76.5 HEAT DUMP MIRROR SYSTEM 4.14 1w-4w 35. 855.72 GRAND TOTAL; NOTE: NO CONTINGENCIES ESTABLISHED PAGES: 2, 6, 21\$23 ELIMINATED

		PAGEOI	F
F.H. BONWIT			
PREPARED BY		REPORT NO.	
CHECKED BY	CALIFORNIA INSTITUTE OF TECHNOLOGY	PROJECT	
TLE	PRIMARY MIRROR		
WEIGHT CALC.	- PRIMARY MIRROR		
	,		
MIRROR (ULTRAL	LOW EXP.)	_	
	MATL: L	L.L.E FUSED SILI	CA
	#79	71 (CORNING GLA	456 /A/E
		•	
<u> </u>	DENSI	TY; 2.21 gr/c 2.21×,0361=.08	cm3(0
//O FUUUU	~1.75 OR!	2.21×,0361=.08	#/ 3
			IN
SPLIT RING 53	7/= 17/2	5 = 1,75	
SPLIT KING 93 GROOVE	D=26.00		[/N'3
	· · ·	•	
	V, = D. x.785 x h.	= /26.0 fx. 785x 1.75=	930
	D_2	•	
	$D_2 = 4.0 \gamma_2 = 5.$		
	V2 = 0,2.785 × 1/2=	(4.0) x.785 x 5.0	62.
			992.
	SUBTRACT COOLING GROOVES;	1 = ~ 60.0=720	
	$(-)$ $\sqrt{3} = .25 \times .25 \times L_{-}$	0625×720 =-	-44.
	3	! 	
	" COOLING BORE:		
	D3= ,25 ; 1/3 = 7,125		
	$(-)$ $V_4 = D_3^2 \times .785 \times h_3$	=(.25) ×.185 × 7.125 =	
	" ANNULAR SPLIT RING GRE	DOVE :	
			•
	$-D_2 = 4.0 \; ; \; d_2 = 3$		i
	$(-) \sqrt{5} = .785(0_2^2 - d_2^2) \times 6$	4 .785/423.62) x.62	51.4
		£V =	946
W= EVx9 = 946.11	× 08= 75 7/85		, .
VV 2 17 /7 /7			
	72		
	그리면 보고 전한 모든 것이다. 그는 그런 한 숙작으로 다시		

JPL 0999-1-5 APR 66

CLASSIFICATION

$(BEVEL) V_3 = .2618 b(D_2^2 + D_1D_2 + D_1^2) = .2618 \times .15(4,6^2 + 4.3 \cdot 4.6 + 4.3) - 2.33$ $W = \leq V \times Q = 6.22 \times .291 = \underline{1.815 LB5}$ $SPLIT RING MATL: INVAR"36" Q = .2917/N^3$ $D = 6.0 Q = .6$ $D_1 = 3.6 IN^3$ $V_1 = (D^2 - D_1^2) \times .785 \times a = (6.0^2 - 3.6)^2 / 785 \cdot .65 IO.85$ $-5\% BEVELUNG55$ $W = EV \times Q = IO.30 \times .291 = \underline{3.0 LB5}$ $MATL: INVAR"36" Q = .2917/N^3$ $D = 7.4 D = 6.4 D_3 = 4.3$ $a = 1.1 b = .664 D_3 = 4.3$					0.5
WEIGHT CALC MOUNTING CELL BRACKET (FRIMARY MIRROR) 2 mA RING CLAMP MATL.: INVAR "36" $g = .291 \%/iN^3$ $a = 0.50$ $D = 7.4$ $a = .3$ $D_1 = 4.3$ $D_2 = 4.6$ $D_3 = 4.6$ $D_4 = 0.5$ $D_2 = 4.6$ $D_4 = 0.5$ $D_5 = 0.5$ $D_$	PREPARED BY	DATE CALIFOR	ORATORY	REPORT NO	_ OF
RING CZ AMP MATL: INVAR 36 $g = .291 */N^3$ $D = 7.4$ $a = .3$ $D = 4.3$	1.1	OUNTING CELL L	BRACKET (PRI	MARY MIRRO	R)
$(BEVEL) V_{2} = .2618b(D_{2}^{2} + D_{1}D_{2} + D_{1}^{2}) = .2618 \cdot .15(4.6^{2} + 4.3 \cdot 46 + 4.5) - 2.33$	RING C	P ₂	D = 7 D ₁ - 4	g=,29 7,4 a=,3 ;3 b=,15	
$(BEVEL) V_{2} = .2618b(D_{2}^{2} + D_{1}D_{2} + D_{1}^{2}) = .2618 \cdot .15(4.6^{2} + 4.3 \cdot 46 + 4.5) - 2.33$		$V_{i} = D^{2}$	- 0;2):785 × a = 1	42-4,3°/785×.3	8,55
$W = \leq V \times P = 6,22 \times 291 = 1,815 \perp BS$ $SPLIT RING $	BEVEL	· · · · · · · · · · · · · · · · · · ·	i.	.4	
$V_{1} = (D^{2} - D_{1}^{2}) \times .785 \times a = (6.0^{2} \cdot 3.6^{2}) \cdot .$				r	
$V_{1} = (D^{2} - D_{1}^{2}) \times .785 \times a = (6.0^{2} - 3.6^{2}) .785 \cdot .66 10.85$ $V_{2} = (0.30 \times .291 = 3.0 \text{ LBs})$ $V_{3} = (0.30 \times .291 = 3.0 \text{ LBs})$ $V_{4} = (0.30 \times .291 = 3.0 \text{ LBs})$ $V_{4} = (0.30 \times .291 = 3.0 \text{ LBs})$ $V_{5} = (0.30 \times .291 \times .2$	3mA 5PL17	RING	MATL: IN	/VAR"36" S=,29	17/N 3
-5% BEVELUNG55 W = EV x g = 10.30 x .291 = 3.0 LBS EV = 10,30 AMATL: INVAR 36 " S=,291 The second of the se	4 //	- D,	<u></u>		6 /N ³
AmA RING SUPPORT D= 7.4; D= 6.4; D3=4.3 a=1.1; b= .6 a-b= .5		V, = (D			
AMA RING SUPPORT D= 7.4; D= 6.4; D3=4.3 a=1.1; b=.6 a-b=.5	W = EV29= ,	10.30×.291 = 3.0	LBS	€ V =	10,30
$V_{1} = D^{2} 785 \times a = 7.4 \times 785 \times 1.1 \qquad 47.25$ $V_{2} = D^{2} \times 785 \times b = 6.4^{2} \times 785 \times .6 \qquad 19.25$ $V_{3} = D^{2} \times 785 \times (a-b) = 4.3^{2} \times 785 \times .5 \qquad 7.26$ $\leq V \qquad 20.74$			MATL: D = 7,4 a = 1.1;	$b = 6.4 \cdot 2$ $b = 6.4 \cdot 2$ $a = 7.4^{2} \times 78.5 \times 1.1$ $xb = 6.4^{2} \times 78.5 \times .6$ $(a-b) = 4.3^{2} \times 78.5 \times .5$	03 = 4.3 -6 = .5 1N ³ 47.25 - 19.25 - 7.26

TILE WEIGHT CALC MOUNTING CELL BRACKET (PRIMARY MIRR	
	OR)
$\frac{SmA}{CENTERING} \frac{BLOCK}{BLOCK} \frac{MATL:INLAR}{9=.291}$ $= A = .75; b = .3; c = .4$ $= V = A \times b \times c = .75 \times .3 \times .4$	A/in 3
COMBINATION) (3)W = 3 & V × P 3.,09 ×,291=.0784 LBS GMA HUB SUPPORT (DNE PIECE)	ETF CHARLES A A A AND
$D_{2} = D_{5}^{2} \times 785 \times (D_{1} - D_{2}) \times 4$	7 2,4 5,4
$= 1.0^{2} \cdot .785 \times (9.0-8.0) \times 4 - 1.$ $V_{3} = (D_{1}^{2} - D_{3}^{2}) \times .785 \times b = (9.0^{2} + 3^{2}) \times .785 \times .7 + 34$ $V_{4} = (D_{4}^{2} - D_{3}^{2}) \times .785 \times c = (5.5^{2} + 4.3^{2}) \times .785 \times 24, 22$	
$W = 2V \times 9 = 80,28 \times .291 = 23.30 LBS \qquad \geq V = 80.$	

PAGE <u># A</u> OF _

PAGE <u>54</u> OF ____ FA CONWIT 5-15-68
PREPARED BY DATE JET PROPULSION CALIFORNIA INSTITUTE OF TECHNOLOGY PROJECT WEIGHT CALC. - MOUNTING CELL BRACKET (PRIMARY MIRROR) WEIGHT LBS) RING CLAMP 2 m A 3,0 SPLIT RING 3 m A RING SUPPORT 4mA 6.03 CENTERING BLOCKS [3] .078 5m A HUB SUPPORT 6 m, A 23,30 TOTAL 34,218

75

CLASSIFICATION

JPL 0999-1-5 APR 66

PAGE 74 OF JET PROPULSION 5-20-68 LABORATORY REPORT NO CALIFORNIA INSTITUTE OF TECHNOLOGY PROJECT WEIGHT CALC. -PRIMARY MIRROR BASE MOUNTING RING. RING BASE MOUNTING 16 A MATE. INVAR 36 8= . 291/13 (TRUSSES MACHINED OUT OF I" PLATE STOCK) D, = 5.5 Dz - 8.5 D3 = 29,0 D4 = 30,0 D5-278 Q = 2, 36=1.8 c - 5,5 e = ,063 f = ,50 $V_{1} = (D_{4}^{2} - D_{3}^{2}) \times .285 \times c = (30, 5^{2} - 29, 5) \times .785 \times 5.5$ 063 255,00 (LEDGE) $V_2 = (D_3^2 - D_5^2) \times ,785 \times f = (29.0^2 - 27.8^2) \times 785 \times .5 = 0.000$ 26,70 281,70 SECTION: A-A 1 BLANKS V3 = B(D3-D2) × b + 1,5(D3-D1)(a+K)-3(D2-D1) K17 6) RIBS OR TRUSSE $= \sqrt{3(29.0-8.5)} \times 1.8 + 1.5(29.0-5.5) 3.0 - 3(8.5-5.5) = 209.80$ 75 V4 = 12 (AA+AB+Ac+AD+AE+AF+AG) 4 = =12/3,0+7,0+4,75+4,5+225+3,5+3,0) A= 4,0x1,25 = ,5 15 -120.00 V5=12(AA,+AB,+AC,+AD,+AE,+AF,+AG,) 1/1 L = 12.75 E TO & RIBS = 12(1,0+3,4+3.0+2,25+1.2+1.9+.64)x, 20.20 6960 (6)V = A = x 6 x L = ,5 x 6 x 12.75 - 38,30 38960 EW = EV x P - 389, 60x, 291 = 113.0 LB5 RING +LEDGE ONLY; 281.74.291= 81.8 LBS SINGLE TRUSS ONLY: 69.60 x.291 = 3.37 LBS

76

SECT, B-B

PAGE	<u>8A</u>	OF	
------	-----------	----	--

F.H	′ .	BONNIT	
		PREPARED BY	

5-6-68 DATE JET PROPULSION LABORATORY

REPORT NO.

CHECKED BY

DATE

OF TECHNOLOGY

PROJECT

1s RETAINER

MATL .: INVAR "36"; S= ,291 1/1 N3

b=4.5 a=7.5; H=1.6

$$V_1 = a \times b \times H = 7.5 \times 4.5 \times 1.6 = 2 (DOVE TAILS) V_2 = 2 \times .2.5 \times .8 \times 1.6$$

					V
				page <u>9</u> A	_OF
	F. N. BONKIT	5-7-68	JET PROPULSION - LABORATORY -		
	PREPARED BY	DATE	CALIFORNIA INSTITUTE	REPORT NO.	
- г	CHECKED BY	DATE	OF TECHNOLOGY	PROJECT	
	WEIGHT CAL	c SUPPO	RT LAUNCH L	OCK (PRIMAR	Y MIRROR)
	2s MIRROR GR	And the second s	25(TYP.) 10(TYP.) Pi	MATL:INVAR	36" ?91#/12 ³
		$-Ri$ R_o $-$	Ro	R ₀ = 12.	
	6 A	do 2	SECT. A-A (ENLARGED)	à= .75 b= 4.5 h=/.	
		7.	,= h-2×(.25+.05) =	7,5- _(2×,3) = . 9) /N ³
	$\int_0^{\infty} \sqrt{R_0^2 - \frac{6^2}{4}} = \sqrt{12.75^2 - \frac{4.5}{4}}$	$A = R_0^2 \pi = 1$	$\frac{[V_1 = a \times b \times b]}{[2.75]^2 \pi} = 510.71 \text{ IN}^{\frac{3}{2}}$		5.05
	fo - 12:55	49 do = 2/fo	$= \frac{225}{12.55} = .179 : \frac{20}{2} = 10.$ $= 5/0, 7/\times \frac{20.50}{360} = 2$	25" 0 = 20,50	
	ASEGNIT = ASECT AA =	29.1 -28.20 =	. 90 IN; V2 = Ass	FGMT 7= .90×1,5	- /.35 - 3.70
· .	180-di (2)		$\frac{\sqrt{3}}{\frac{b^2}{4}} = \sqrt{13.0^2 \cdot \frac{4.5}{4}} = 12.8 ; A$		
	DAZIRI BO 180 DA ACZ A	Aosc Aoox	$\frac{(180-\alpha_0)}{2\pi} = 510.71 \times \frac{159.50}{360}$ $A_{\Delta_0} = 226.2 - 28.2 = 198$	= 226,2 IN	
	1000	AOZ = A00-2	Aosa = 5/0,7/- 2(198.0		/ 2 4
	$\frac{1}{4}g\frac{di}{2} = \frac{b}{2}/f_i = \frac{225}{12.8} = .$		8 · 225 = 28,8 in V		- 1.30
	Aisc Aio x (180-di) =	532,0× 160 a =	236.0 IN Aise Ais	c-AA: 2360-28,8 =	
	Aiz=Aio-2AisG=5	32.0-2(207.2)=1	17.6 m^2 ; $A_2 = \frac{Aiz-Aoz}{2} = 5 \times .291 =83 LB$	=1.17.6-114.71 1.45 N	.2,85

			PAGE 10A OF
FH BCNW17	5-8-68 DATE	JET PROPULSION LABORATORY	REPORT NO.
CHECKED BY	DATE	CALIFORNIA INSTITUTE OF TECHNOLOGY	PROJECT
		TLAUNCH	LOCK (PRIMARY MIRROR)
35 MOVA	BLE BLOCK	MATL.	: INVAR "36"; g= ,291*/12
		•	a = 1.75 d = .50
			L=4.5 d=1.65
	(5-+-)	The	h=1,1 a,=1.1
	-a, -=		$d_3 = .75 \qquad 1N^3 $
	1 de	V=axLx	4 = 1.75 × 4.5 × 1.1 = 8.67
	1	•	85 × 9 =2×,5×785 ×1.75 - 68
	() d.	•	785 × a,=65²,785 × 1,1 - 36
- a -		V4 = a=x,1836	(7-9)=.75×.785×.6529
h) = = V × g = 7.32	1 * 291 = 2,141	EV - 734
	<u> </u>		
45 STATION	ARY BLOCK	MATL,	INVAR 36; 5-,291 1/12
		· ·	$\frac{1}{1}$
	=5	Visa	$\times L \times h = 1.15 \times 4.5 < 1.2 = 6.2$
$L = 4.5$ d_{r}	=.65	// 	(2x785 × 9=2x,5 × 785x)5- 46
h = 1,2	1	V3+ d. 3.7	185 × 9, = 65 × 785 × .827
a,=.8			5.47
	d.	14/1/-0 51	17.20. / 50 / 8 6
h	-9	W - Z V * go = 3.4	17 ×,291 = 1.59 LBS
 			
55 GUIDE SHA	FT(5) d=, 45; L= 3,3		6; 5 = ,291 7/N3 IN3
Lilla]	2.785×L+d,2×185×L,	= 45 x/85 x 3,3 +,75 x 785 x . 1 = 575 2 \(x \(y \) = 2 x . 575 x . 291 = .33 LB.5
1-21-	$A_{j}^{-i/3} \mid L_{i}^{-i/3} \mid$	Wof(2) = 0	2 (x jo = 2x .5/5 x .29/ = .33 28.5

			PAGE <u>// A</u> OF
FH. BONNIT	5-8-68	JET PROPULSION	
PREPARED BY	5	LABORATORY - CALIFORNIA INSTITUTE	REPORT NO.
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT
WEIGHT CALC.	- SUPPORT	LAUNCH L	OCK (PRIMARY MIRROR)
65 COLLET		MATL: SPRING S	Preel; S= . 283 #/1N3
D, d, D2	a	d_2 d_2	$a = .1$ $b = .4$ $b = .4$ $c = 1.5$ $d_1 = .25$ $d_2 = .40$ $d_3 = .25$
	•	= .785 $\left(D_{1}^{2} - d_{1}^{2}\right) \cdot C$	
	·	1 201- (2 2 2) 4	b=,785/.8225)×.4= .18 2=,789,6225)×.1= .02
W = = V	1xp=,61x,28	$V_{\mu} = \pi \frac{D_{1} + d_{4} \times 06 \times 0$	$f = \pi / \frac{6 + 36}{12} \times 0.06 \times 1.0 .02$ $\leq V .61$
$-\frac{1}{a}$, $\frac{1}{a}$, $\frac{1}{a}$	CAP D: 1, d,=, 6 d,=, 3	0 $a = .55$ 6 $b = .35$ $V_1 = .785$ $V_2 = .785$ $V_3 = .785$	$AR "36", S = .291 #/1N^{3}$ $D^{2} = .785 / .0 \times .55 $
	W= ZVxg	= ,3/8 × ,29/ =~. MATA	
		ds V = .785 [d,	1: INVAR 36 9= 291 C= 9 = 9 ; f= 1.8; g= 1 d; 25 ; d= 4 ; d; 3; d= 2 20 + d; b+d; c+d; e-d; d; g + d; 2+1 × 1.1+25 × 9+, 42 9 (42 2) 1 20 11 (2) 1-4+, 2; 18
$W = V \times S^c = .2$			30 JPL 0999~1-5 APR 66

PAGE <u>12A</u> of ____ S

F. H. P. CNWIT	5-9-68	JET PROPULSION LABORATORY	
PREFARED BY	DATE	LABORATORI	REPORT NO.
		CALIFORNIA INSTITUTE	
CUECKED BY	DATE	OF TECHNOLOGY	PROJECT

WEIGHT C	ALC - SUPPORT LAUNCH LOCK-SU	IMMARY PRIMARY MIRLOR
SUPF	PORT LAUNCH LOCK (EACH)) - ASSY.
/ 5	RETAINER	WEIGHT (LBS) /, 39 A
25	MIRROR GRIP	,83 A
<i>3</i> s	MOVABLE BLOCK	2.14
48	STATIONARY BLOW	1.59
55	GUIDE SHAFT (2)	,33 /
65	CCLLET	.17
75	END CAP	./0
85	PISTON	.05
	FOR (12) LOCKS 12×6.60= 79	7.20 LBS 6.60

			PAGE <u>/3</u> of
F.H. BONWIT		JET PROPULSION	
PREPARED BY	DATE	- LABORATORY - California institute	REPORT NO
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT
WEIGHT CALC, -	- ASSEM	BLY .	(SECONDARY MIRROR)
la! MIRROR	2 HOUSIN	<u>v6</u>	MATL: 6061 AL.; P=.098/13
D, d D D D D D D D D		.	D_{2} $a = 14.6; D = 4.5$ $b = 12.0; D_{1} = 5.0$ c = .4 t = .100 Typ. $= 3.00; D_{3} = 5.0; D_{4} = 3.0.$ $D_{5} = 3.4 \text{ (APPR)}$ 1.4 = .8 1.8 1.8
[ADDED (6) STIFFENERS] W= \(\times V \times \times = \) 2a	$V_{2} = V_{3} = 2 \cdot \left(D_{3}^{2} - 1 \right)$ $V_{4} = V_{5} = 1$ $V_{7} = (d)$ 35.0×098 $FIRS$	$\frac{d^{2}}{d^{2}} \times 785 \times m = (4.5)$ $\frac{d^{2}}{d^{2}} \times 785 \times t = (5.0^{2}).7$ $\frac{d^{2}}{d^{2}} \times 785 \times t = 2/5.0$ $\frac{d^{2}}{d^{2}} \times 785 \times t = 3.0^{2} \times d \times \pi \times t \times C = 4.3$ $\frac{d^{2}}{d^{2}} \times 785 \times t \times C = 4.3$ $\frac{d^{2}}{d^{2}} \times 785 \times t \times C = (6.0)$	$185 \times 100 = + 1.96$ $2 \times 7.85 \times 100 + 2.51$ $285 \times 100 - 2.82$ 22.82 22.82 22.81 22.81 22.81 22.81 22.81 22.81 22.83 22.83 22.83 22.83 22.83 22.83 22.83 22.84 3.89 $4.3^{2} = 3.2^{2} \times 785 \times .1 \times 6$ 3.89 $2 = 35.00$ $MATL : U.L.E. FUSED SILICA$
t	t = V = (D)	.3 ; D='3.5) APPR 2-d"7.785 xt=(3,52-	#7971 (CORNING GLASS)
$W = V \times g = 2$	41×.08 =	.20 2B3_ 82	

JPL 0999-1-5 APR 66

CLASSIFICATION

17:

. u e		a*	
			PAGE OF
FH. BONLIT	5-9-68	JET PROPULSION LABORATORY —	REPORT NO
	CA	LIFORNIA INSTITUTE OF TECHNOLOGY	PROJECT
T TLE			
WEIGHT CALC	SECONI	DARF MIR	ROR MOST.
3a HEAT S	TOP MIRRI	MATL.:	6061 Al, COATED WITH FUSED SILICA
d		•	$t = (3.5^{2}25^{2}).785 \cdot 25 - 239$
W =	V × S = 239	×.0935 .223	t=(3,5-,25),785+25-239 12,18. M3
	Disks		19ATI. 6016 AL g= .098 1/12
\mathcal{J} =	$3.5 ; d = .2.$ $V = D^2 - d$	5; t= .05 2),785 x t = (3,52	(25) 2:785-4.05-2= .95m3
	= ,95 × ,098	2 = ,09 3 4 LBS	
50 SECONDARY	MIRROR	$t_m = 0$	MATL: U.E.LJISED SILICA # 7971 (C.GL.WK) S=.08*/12 D= 3,0 th=5
W = Vxp = 3,5			02x.785x.5= 3.53,N3
6a MIRROR			61 AL g= .098 1/12
		1 = 1.6 b=	$3.0 \cdot D_3 = 3.5$ $6 = 6.5 APPR IN^3$ $0 = 4.0^2 785 \cdot 1.6 = 20.10$
		$V_2 = D_1^2 \times 785$ $V_3 = D_1^3 \cdot 785$	-v6=3,0×785 v.6=4.23 -vc:J5-785 x,5-4.82
$W = V \times g = 10,80$ CLASSIFICATION		13 FOR 1 11 2 13	BWG EV = 10.80 JPL 0999-1-5 APR 66

FH	PREPARED BY	JET PROPI LABORA CALIFORNIA I OF TECHN	TORY -	REPO	75_0F
TITLE /l'	EIGHT	CALC SECONDARY MI	RRUR	ASSY	SUMMARY
7 a		SEAT WEDGE(S (3) a = .7.5; b = .25; c	MITTL.	16061 AL.,	
	cipe	$V = c \frac{(b+e)}{2} \times a = .75$ $W = (3) .1828 \times .098$	- /		3 /// 3
8a	Misc.: ((3) LUGS, BOLTS, NUT W = .2			TC
		SECONDARY MIRRO	e Asst		_ \
	1 a	MIRROR HOUSING FIRST DIAGONAL		3.03 .20	r (LBS)
	3 9	HEAT STOP MIRK	POR	.223	
	49	SEALING DISKS		,093	
	59	SECONDARY MIRK	POR	, 282 /	
	69	MIRROR GRIA		1,06	
	79	SEAT WEDGES	(3)	.054	
	8 4	Misc. Lugs, Bolts,	NUTS ET	.25	
	90	SPIDER RING		56,30	
	10 a	SPIDERS (4)		6.09	
	11 a	5 FT. OF, 25\$ TUBING		, 353	
	-12a	COMPONENTS (MOTORS	ETC.)	12,49	

			PAGE OF
F. H Bo	OKILIT	JET PROPULSION	
PREPARED BY	DATE	- LABORATORY CALIFORNIA INSTITUTE	REPORT NO
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT
WEIGHT C	PALC 2ND D11	AGONAL MIRROR	- ASSY
1 <u>d</u>	HOUSING	MATL.	: 6061 TG AL; 5= .098 kg
*****	d	t.	090.N, 1.27#/F72=g'
F //		AREAS	
7 K e	+		a = 6.25in b = .8 c = 6.50 d = 4.85
		· · · · · · · · · · · · · · · · · · ·	e=2.99 f=4.00
// -	+ Pi		g = 1.4 h = 6,25
	E		17.14 15.80
	└	4.0 A	+ 15.80 = 32.9 41N × 5.25 = 173.00 N
f	•	. 11	= A, -142785) = 173,0-1255=
			1255 160,451N - K=250
	k		$B-F = (6.50^{2}) - (2.50 \times 165) = 42.25 - 2.06 = 40.19 \text{ N}^{2}$
g		H	
		> \1	75×250×2=1436 75×650)-26= 37.4-14.36=
	G	H_{c}	= 40,19+23.04=63.23
2d)		H (Z)WALL	<i>5</i> :
	G	<i>'</i>	E+6)=126,461N
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		H Az	+2(E+G)=160,45+126,46= = &A=
		$\{ A \in A \mid A \in A \}$	=286,911N TOR
		2	286.91 1.99 F7 2
	1.1. < 1	× 8 = 1.99× 1.2) =	2.53 LBS
	W= <a< td=""><td>) "" =</td><td></td></a<>) "" =	
	DELLOUIS	DANT AND (META)	BELLUIUS CARP,) Wp= .751BC
	BELLOWS	$ u = W_0 + W_1$	c=75+242= 9921BS
	FLANGE : O.D. : 6	$\begin{array}{c} 500 \\ 00^{2}, -I0^{2}, 785 \times 7 \\ 25 $	=16 52-40 12784×175-
M.	4TL. 6061AL T = 4.	25 W = Vx0=247.1x	092 = 242LBS = 1/2 = 2475IN3
CLASSIFICATION	1048 JIN3	85	JPL 0999-1-5 APR 66

0

D

FH. BUNIVIT		JET PROPULSION LABORATORY CALIFORNIA INSTITUTE	REPORT NO
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT
WEIGHT CALC	2ND DIAGO	N'AL - MIRROR	ASSY, - REF. DWG. 10026213
$\frac{3d}{a = 5.00}$ $a = 5.00$ $b = 2.50$	YENT PLA	REF. D.	6061-T6 ALUM, 9=.098 *IN3 W6.10026219 = 5,0x3,75 x,25 = 4,675 IN3 R5 x.098 = .457 LBS
A1240 2400 R1 A1240 2400 R1 A1240 2400 R1 A150 ANN ANN ANN ANN ANN ANN ANN ANN	769~5=,984 1710; 160°= <u>Li</u> 1,134 Ani = 4xi = 1.966×1134 N	$R_{1} = 5.0$ $R_{2} = 4.7$ $A = 7.2$ $B = 7.5$ $C = .700$ $E = .5 \text{ cn}$ $A_{12} + 0 = 3.00$ $V_{1} = \begin{bmatrix} 8.11 + 1.48 + 2.0 \\ 4.2 + 0 \end{bmatrix}$ $V_{2} = \begin{bmatrix} 7.16 + 1.48 + 2.0 \\ 1.85 \end{bmatrix}$ $A_{12} = A_{12} = 1.602 \times 9$ $A_{12} = A_{13} = 1.602 \times 9$ $A_{13} = A_{14} = 1.602 \times 9$ $A_{14} = A_{15} = 1.602 \times 9$ $A_{15} = A_{15} = 1.602 \times 9$	925 = 1.925 Apri: 12 = 1.925 × 110
$W = \leq V \times S = 3.8$	815 - ×,08 = 3	305 LBS	
CLASSIFICATION		86	JPL 0999-1-5 APR 60

I.

T

E

C

PAGE ______ OF

			PAGE <u>/8</u> OF
F. H. BONWIT	5-13-68	JET PROPULSION	
PREPARED BY	DATE	LABORATORY -	REPORT NO
		CALIFORNIA INSTITUTE OF TECHNOLOGY	PROJECT
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT
WEIGHT CALC-	2ND DIAGO	NAL MIRROR A.	SSY - REF. DWG. 1002 6213
51 MIRROR	2 · Bort. PA	D MATL:	TEFLON, S= .0795 #/IN3
[SEE 4 d]		= 1.980 = 1.980	
R	1	A240: 240 , R3,=	1
Azvo	f = 1	98x.866 = 1.72; Af8	$= \frac{1.72 \times .99}{2} = \frac{1.70}{2} / N^{1}$
a A_{hh}	h= Ahij i=	a-g= 2.96-,99 = 1.97 197×,577 = 1.135	7; Agi = 1.97 ×1.135 = 2.24 1N2
	/ K=	1.72-1,135=,585	AhK=1.974,585=1.151~
			- /N ²
		V=[A240+2Af8+2	2A/1i +2A/4] t =
		= [8, 35 + 1,7 + 2,2	14+2,3) x,002 = .02918
	W = .02	918 x.0795 = .00	023 LBS
6d MIRROR	- TOP PA	D - N	EGLIGIBLE,
7d MIRROR	- RING H	CLDER MATL	6061-TG ALUM, S=,098 /N
[SEE 4d]	· •	t=.125 R,=2,2	1
Kr. 1	R	2 = 3,100; b = 28.	$A_{1240} = \frac{240}{360} 2,25 \sqrt{\pi} = 10,6$
	f:	2,25 x ,866 = 1,945; 2,25 x ,5 = 1,125;	Africa = 1.945 × 1.125 2.19 127
ab	1 1:0	2,-9, = 3,1-1,125 = 15 1,975 x,577 = 1,14	975 Ahil, = 1975 × 1.14 = 2.25 N
	/ K,=	1,945-1,14=.805	Ay14, = 1975 × 805 = 1,585 IN 3
	V ₁ = [4 ₂	40+2 Afg, +2 Ahii, +2	4K,h,]t =
	=[10.	6 + 2,19 + 2,25 + 3,1	70/.125 = 2,23

CLASSIFICATION

F. H. BONWIT PREPARED BY	DATE DATE	JET PROPULSION LABORATORY - CALIFORNIA INSTITUTE OF TECHNOLOGY	REPOR	
WEIGHT CALC.		SONAL MIRROR		
		HOLDER (CON		
f2 = 1.9 x .866 = 1.6	:, 125 R2 = 1	1.900 b = 2.8	75 A2240 360	= 1.9 = 7.551m2
$f_2 = 1.9 \times .866 = 1.6$ $f_2 = 1.9 \times .5 = .95$	45 ; Afrija !! 50 ;	2 = 1.560	'N ²	
$f_{1} = 6 - g_{2} = 2.875$ $f_{2} = 1.925 \times .577 = 0.000$	- 950 = 1.9 25	Ahriz= 1.925×1.1	$\frac{1}{2} = \frac{2,135}{2} / \sqrt{2}$	2.
K2= 1,645-1.11=.5.	35 A	1.925 v.535	5 = 1,131h 2	W3
	• • • • • • • • • • • • • • • • • • •		V, =	2,23
	1/2 =	[A2240 + 2A fg. + 4] [755+ 1,560+2,1	21. + 2Ann. t	-1.685
W = .	EV x S = 54.	s-x 098 = .0534	IBS EV	- ,545
8d (2) M	IRROR AD.	J. SCREWS -	- NEGIIG	BLE
2NO	DIAGONAL I	MIRROR ASSY	SUMMARY	
1d	HOUSIN	<u> </u>	WE16	147 (LBS)
2 d	BELLOWS		.992	
3 d	ADJUSTM	IENT PLATE	.457	
4 d 5 d	MIRROR	NAL MIRROR BOTT, PAD	305	
6d+8d 7d		RING HOLDER	.053	
90	MIRROR A	FOLDER TOTAL	1965	5.304
CLASSIFICATION		88		JPL 0999-1-5 APR 66

		·	PAGE 20	_ OF
FH BONKET	5-13-68	JET PROPULSION		
PREPARED BY	5-/3-68 DATE	LABORATORY -	REPORT NO.	
	DATE	CALIFORNIA INSTITUTE OF TECHNOLOGY		
TITLE ,			PROJECT	
WEIGHT CA	LC 2ND DIA	GONAL MIRROR	4SSY-REF. DWG.	10026213
9 d	MIRROR H	FOLDER		
		7 C 14	ATL .: 6061-T6 AL	
SEE 4 d	7	R	= 2,250	984/1N3
			- 4,200	
	R ₁ R ₂	R_{i}	2=1.980	
/	1 12		=3,100 b= 2,9	,
			5,100 6 2,9	62
	$\int \frac{dt}{dt}$		= .698 e .5	00 .5=,200
			•	/
a			- 240 - 2 - 101	2
6		A124	$= \frac{240}{360} R_1^2 \pi = 10.61$	1
				/N ³
	-/-/		010. 2	
		- A 224	0 = 240 R2T = 8,203IN	
f. = 2250x,866= 1.948				
	Afig = 1948 × 1,125	= 2192 = V1 = A124	+ 2Afs + 2A, i + 2A, i)	•
f_1 : 2250x,866= 1.948 g_1 = 2,250 x, 5 = 1,125	2	2 10	× × × -	
hi= 3.100-1.125=1.975		V= Fine + 3	2, 192 + 2,252+3,192 × 698	
!	Ap, i, = 1975 × 1,140	- =		
i, = 1.975 x,577 = 1.140		19 -1 /kan	2A, +2 A, +2A, K	
	= 1	52 IN2 2 L 2240	, 1	i
K, = 1,948 - 1,140 = ,808			(c-e)	
Ay, 4, = 1,975 x 808 = 1,590	ה וא ^ע	$V_2 = [8,203+1,$	698 + 2,240 + 2,276] × 198	-2,855
fz = 1.980 = 366 = 1.715	171E. RAL	V=528K.=	2×2×808=	032
$f_2 = 1.980 \times .566 = 1.113$ $g_2 = 1.980 \times .5 = .990$	7fig2= 1,113 x,740 ==	1648 N 3 2		
			< 1/ -	90114
12 = 2,962-990 = 1,972	A Property of the second		≥V=	9,842
12 = 1,972 x,577 = 1,138	Ayziz = 1.9 /2 × 1.138 =	2244 h		
Kz=1.715 -1.138 = .577				
Aby = 1.972×.577 = 1.138				
W = .	< Vx0 = 9.8	42 4 098 = ,965	<u>LBS</u>	

T.

F.H. BONWIT	5-21-68	JET PROPULSION - LABORATORY	
PREPARED BY	DATE	CALIFORNIA INSTITUTE	REPORT NO.
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT
WEIGHT CALC.	- HONS	SING TRUSS	(TUBULAR)
		D=28"ON #; MAT	Z: INVAR "36; g=. 291/1
ASSUME: BWG16 W	T=,065		
	d=2.00 $2t=.13$ $i=1.87$	$D = 28$ $V_{i} = (d_{0}^{2} - d_{i}^{2}).78$	1N ³ 85×π D=
QUANTIFY: 2		, ,) x,755 x 1 x 28 = 34,50
	. •	= 34.50 x.291 = 10	OLBS EA.
ASSUME; BING18	$-WT = .049$ $d_0 = 1.00$ $2t = .902$ $d_i = .902$	$D = 28$ $V_1 = \left(d_0^2 - d_1^2 \right)$).785 × JT D =
QUANTITY: 4-		$= (1.3 - 90.00)$ $2.85 \times .291 = 3.73 LB$ $\leq W = 14.92 LBS$	
JI / PTRUSS DIAGONALS PRIBAY I W (EA) QUAN E L	ASSUME N BAY d	BWG 18- T=.049 0=1.0 = 902	MATI. INVAR 36 8=.291 /IN
A I 10.0 .426 2 . B I 10.33 .44 10 4.4	W=(ao	-di2).785 x 1.0 xg - (1	(02-902),785 × 1.c . 291= 0426/N
D. V. 20.07 .854 12 10.5	30	EW= 39,802185	1t 20.0 2t 14.92
€ 398	A 7	BULAR TOTAL _	3t 39.802 ₹ 74.722

PAGE 22 OF .

			PAGE <u>24</u> OF
F. H. BONWIT	5-23-68	JET PROPULSION	
PREPARED BY	DATE	LABORATORY - CALIFORNIA INSTITUTE	REPORT NO.
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT
WEIGHT CALC -	HOUSING	TRUSS (TUE	BULAR)
3t 1"g TRUS	S DIAGON.	AL-BAYI	(CONT'D,)
	N.	= 14 × A	n; 15°=14×,2538 = 3,63
			c = 7.26 L _F = 2.5
14.00"			2,5
30° 15°	W 51N		8'=
30°	V 150	C '= 7,26	B = 5.328
$L_B = \sqrt{c^2 + L_T^2} = \sqrt{7.26^2 + 13.5^2} =$	14.5.		
LB = 15, 328	<i>↓</i> 	Lr=13.	5
BAYI	1	2) (FITTINGL = 15 2 = 10	. 328
		L _B = 10	.328
		4:	
Lc = Vc2+ L2 = 17.262+19.51)2 =	C = 7.26	Ci	20,824
Lc = 26.824			
2 L = 5,00 4c : 15.82		W 4 1 10	
DA	YII,III & 1		, <i>517</i>
6=1c2+12= c=	7.26	LD' = 25.074	
$= \sqrt{7.26^2 + 24^2} =$			
		LV = 24.0	
$L_{D}^{\prime} = 25.074$ $2L_{F} = 5.00$ $L_{D} = 20.07$	7		
	BAY]		
		91	
CLASSIFICATION			JPL 0999-1-5 APR 66

OF TECHNOLOGY CALC. - HOUSING TRUSS-SUSPENSION-PIVOT END PIVOT YOKE 120 MATL : INVAR. 36 0=,291 4/N3 15 a = 21.5K: 2.2 8.0 axbxh = 21,5×2×8 m= 1.75 2,0 -2.2 V10 27×10 C= 8×175.15 1,5 n = 3.3 ,6 .312 7,35-V, 2/t3×e,×b) = 2.3×1.6×2.0 19 = 1.0 1.75 111.4-V3 [e,f,+e,f,]6. 12.0 5 = 1,0 31.5 V4 exf, x c= 1.75x 12,0x1,5 16,6 e, =1.6 2,3 -3.6 -13 2 fs h3xb = 1.5x1,2x2.0 $e_2 = 2.2$ u = 3.016 -14 2 /4 fax6. X = 1.75 · 9,0-1/6 2(9. 4 - c)=2.1x3x/6 y = 1,0 = 2.0 67,0-1/4 2 41×a, b = 4,248×2 2= 18 = 3.3-3.12-16 242.Pb 2.6.6.21 = 8.0 4.5-1/2 272 c= 1.75 215 -1.57 V17 2(d2.785.1) = 2x1x785.5 = 4.2 12 = 2.6 EV 61,15 W= SV = 61,45x,291 = 17.90 LBS.

PAGE	26	OF	
------	----	----	--

FH. BONWIT 5-27-68 JET PROPULSION LABORATORY

REPORT NO.

CALIFORNIA INSTITUTE OF TECHNOLOGY

	CHECKED BY		DATE	OF TECHNO	OLOGY	PROJECT	
TITLE	WEIGHT	CALC -	Hous	ING TRU	125- JUSP	ENSION-PIVOT	END
		_			_	\$ SUMM	
6tp		PILL	ow t	BLOCK	(s) M	ATL. INVAR "36"	
				7 16	a = 2.0	6=20,5=11	<u>, </u>
	_	parameter	The second secon		V = a .b	4 h = 2.0x 2.0 x /.5-	6.0
					,	785 14 = 312 785-20	
	-	- a	6			• •	4.48
	Ĺ						
			2W = 21	1 xp = 2	× 4.48 ×	291 = 2.6/185	

HOL	ISING TRUSS SUSPEN	SION	
			T-LBS
PIVOT END	PIVOT YOKE -	17.90	
$2t_{p}$	MOUNT CHANNELS (2)	3,40	
$3t_p$	PIVOT BLOCK (2)	4,52	
4tp	PIVOT BOLT	1,73	
5tp	TIE BOLT	1.61	
6tp	PILLOW BLOCK (2)	2,61	
1tf	TIE CHANNEL (2)	72.2	31.77
244	I-BLOCK (2)	32,4	
3 <i>t</i> /	TAPER BLOCK (2)	4,36	
44	YOKE TEE	24.80	
			133.76
	SUSPENSION TO	OTAL	165.53

PAGE <u>27</u> OF _ F.4 BONWIT WEIGHT CALC. - HOUSING TRUSS - SUSPENSION - PIVOT END MOUNT CHAMAELS) (RIGHT & LEFT) 2tp. MATI. INVAR 36 9 = 2914 b=20, h=1,0, l=65 t=.25 V, = b = h = £ = 2.0 = 1,0 × 6.5 13.0 V. 6'1/xl=1.5x.75x6.5 -- 715 5.85 2/1/2 2 V. C =2.585 x ,291 : 3.40 185 PIVOT BLOCKS) 3 tp MATE INVAR 36 $a = 3.0 \cdot b = 2.0 \cdot 6 = 2.5$ $a = 2.0 \cdot b \cdot 1.7 \cdot \frac{1}{5} = 1.0 \cdot \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10}$ V = axbxh = 3,0 × 2,0 × 25 /5.0 Vy = a, yb, x4, = 2,0x1.7 x1.0 - 3,40 d= V2 = 0/2.785 x a = 3122 x .785 x 3,0 -V4 - d2785 x6 = 3122 x785 x 2.0 2 W= 5V x (=2x7,75 x,21/= 4,52. LBS MATL STEEL; S= .283 /IN3 PIVOT BOLT 4tp d=, 3/2 L= 8.0 V= d2x,785 x L=3122,85.8. 6.1 6.1 x 283 = 1.73 LBS STA TIE BOLT MATL: STEEL SC. 253/M. d= ,312 L=7,5 Vd2785xL=,312+785x75 EVx 6 = 5,7 x,283 = 1,61 LBS

CLASSIFICATION

PAGE 28Aof F. H BONIVIT 5-27-68 REPORT NO. PROJECT WEIGHT CALC. - HOUSING TRUSS (TUBING) SUMMARY TUBE FITTINGS (DOUBLE) 4t MATL, INVAR"36"

8 = .291 /1 N3 REQ'D (59) V= (4×1.0×1.0 + 2×1.0×10) ×125= . .750 V2 = 1,25 x T x.50 x 2 4.680 W = 4 (80 x 29) 1.365 LBS EA. (59) W = 59 x 1.365 = 80.50 LBS TUBE FITTING (SINGLE) 51 REQ'D: (2) V= 12×1.0×10+1×1.0×10×10×125 = 375 3.930 V2 . 1.25 x T v. 5 x 2 -4305 W: 4,305 x 9 = 4,305 × 291 = 1.25 185 EA (2) $W = 2 \times 1.25 = 2.50$ HOUSING TRUSS (TUBING) 2-2" \$ RING + 4-1" \$ RING + 60-1" DIAGONALS; 2-SINGLE TUBE FITTINGS 58-DOUBLE " "

CLASSIFICATION

9.5

JPL 0999-1-5 APR 66

PAGE 29 OF JET PROPULSION FH BONWIT REPORT NO CALC. - SECONDARY MIRROR -SSY. SYSTEM CONT. D FROM PAGE 15 REF. DWG \$10026236 Ga SPIDER KING MATE, 6061-TG ALUMINUM P=.098 4/12 D = 29.0; D,=26.0 Dz = 26.60 D_{i} 4 = 6.75 ; 4, = .25 V,= 102-D,21785xh=199.0-26,02)781x 6.75. 875.0 V2 = (D1-D,) 785 × 4, = 126.60 - 26, 0, 785 × .25 6.18 (4) CUT. PUTS V3. 4 (3,5+2,75) × 2,5 × 1.5 = F. VERT.
MOTOR. 94.0 (4) CHT-CHT V4 = (1.5 x 1.5 x 1.0, + (4.5 + 6.0) x 1,5 x 1.5 4 - 163.5 (2) CUT-ruts F. PIN PULLERS (5 = 2/3,0 x 4,0 x 1.5) = - 360 (4) VERT, ROD HOLES VG: 4x.15,785x,25 (4) HOR, POL HOLES VG: 4x1,5,785x1= EV W = EVx (: 575,23 ,098 = 56.3 LBS MATZ, INVAR 36", 5=2917 SPIDERS 10a a=2,5; b=7.0; h=11.0; t=.100 V=a+b/x = 2.5+7.0 /1.0x,10 = 5.24 IN3 FOR (4) SPIDERS: 4=Vxp=4x5,24x,291=1 110 5 FEET OF 25 & TUBING, OBOWT, MATL. STISTL,: 6: 283/2 EV= (252-192) x12 x 5 x 785 = 1,245 W3; W= EV x0 = 1,245 x,283 = 353 LBS

F. H. DONLOTT 5-28-68 JET PROPULSION LABORATORY WEIGHT CALC. - SECONDARY MIRROR ASSY SYSTEM, (CONTO) E DENOTES ESTIMATE COMPONENTS TOTAL WEIGHTS 12a, 4) VERT, MOTOR & GEAR CASE! 1202. OR . 5 LBS EA. -2. 4 HORIZ, MOTOR & GEAR CASE , 1202 OR . 5 LBSEA -2.0 BE COUPLING : 102 OR .0631BS EA -.50 4 (8) BALL SCREW ASSY, 1602 OR . 375-LBSEA-2.99 51 (8) E FLEXIBLE ROD 12 02 OR 1/25 LRS EL 6 81 E FLEXIBLE WINT ASSY. : 502 OR . 313 LBS FA-25 12 (2) - CARTRIDGE ACTILATED PINPLLER 402 OR ,25 LBSEA" .5 8) (2) & SUPPORT PAIRS FOR ITEM (PAT) 102 OR ,063 LES EA. .125 (2) LOCHING STRAP: 4 × 1.0 × .25 MATL. INVAR. . 291 LBS. EA.
(2) " 2 × 1.0 × .25 S= .291 1/46 LBS EA .582 ,291 ≤W: 12488 FOR SUMMARY OF SECONDARY MIRROR ASSY. - SEE PAGE 15

PAGE 30 OF ___

PREPARED BY	5-29-68 LA	PROPULSION BORATORY PRNIA INSTITUTE TECHNOLOGY	PAGE	_ OF
FIFLE L'EIGHT CALC.	-ELECTR	ICAI & FLE	CTRONIC	(C)
IE ELECTRONICS		18, nLB3	COPIED FA	
Le ELECTRONICS	-P,S	10,0 "		
3 e SUITCHES		1,0 "		
4e ELECTR HARNE	SS & CONNECTORS	15.0 "		
Je SPOTTING SCOPE	E ASSEMBLY	20.0 4		
	•	64.04	, ————————————————————————————————————	
·				Ĭ

JPL 0999-1-5 APR 66

L

CLASSIFICATION

	DONINT 5-29-68 JET PROPERSION LABORA CHECKED BY DATE CALIFORNIA CHECKED BY DATE OF TECH EIGHT - CALC CAMERA-VIDICON	ATORY REPORT NO REPORT NO PROJECT
10	Accusin RIES	18.3 -55
20	BASE PLATE	10,0 "
3 c	HOUSING & ADAPTER	6.0 "
4 c	MOTORS & GEARS	2.0
5 c	FOCUS TRACIT	3,2 "
60	ALIGNMENT SENSOR ASSY	10,0 "
7 c	VIDICON LIBLIES (3)	15.0 "
80	PIN PULLERS (2)	2.0"
	MISCELANEOUS HARDWARE	11.0 1
		176.5 LBS

F. H. BOWLIT PREPARED BY CHECKED BY	JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY	PAGE 33 OF REPORT NO. PROJECT
WEICHT CALC	- HEAT DUMP 1	IRROR SYSTEM
TW.	HEAT. DUMP MIRROR AND BACKING PLINTE	MATL, 6061-T6 g=, 198 t, =, 40 t,=,25
	A to	D= 7.100
2	$V = D^{2},785(.6t,+t_{2}) = 1$ $W = EV \times S = 19.4c \times .0$	
<u>Sur</u>	PPORT TUBING (=2.107 $C=1.85$
D	55	b=5,0 = .375 dz25
1 1 2 3	, , , a	=.277 $d_3 = 152$
		$/N^{3}$
WT = ,049 FOR 3/8 \$.	1/3/8=(d2-d,2).785 × DA =(.37.52 4.2 +.5+8(2,107) = 22,556 = L	- 1.7.7.703 (2.0)
	V14 = (d2-d3) 785. L= 12	5 ² -152 ²).785 ~22,56= .698 = V 1,138

PAGE	34	OF	

			PAGE	4 of
FM, BINGIT	5-29-68 DATE	JET PROPULSION		
PREPARED BY	DATE	LABORATORY CALIFORNIA INSTITUTE	REPORT N	0.
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT	г
WEIGHT CALC	HEAT	DUMP MIRE	R SHSTEM	
	^	. ,	44	
3 W ///K	PERK SIM	PRIST YOUR	MATL. 606.	4.
\rangle -			J ^e :	= . C 38 / IIV
D			D	0 0
467		D d	C)	
		A	-	
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	· · · · · · · · · · · · · · · · · · ·	7
	D. 02			
1	T	a = 3	b= 1.3: e= 1.7	
		h = 4	b= 1.3; e= 1.7 1.6; D2= 1.2	
A = a + b + 1 + 3	41.7 46 2 7	D,=	1.6; Dz=1.2	7
$A = \frac{a+b}{2} h = \frac{.3}{.2}$	2 3,2	V -21 - a =	7.324/6	1/1
			2 * 3.2 * .4	2.56
AB= (2.8 × 2.4) - 2.4	785).60=4.011	N2 V2=(D12-D2),755	1.62-1.27) 7.50	ias 1,84
		V3 = AB x 6 = .	4.01x 1,7	6.82
Ac=1.55:55/2=.722	5x2 = 1444	V= (A = e)-4	1.785 = 1.44×1.7 -(1.0.)	872 1,655
		- 250 /26	2	7 12876
W= 2	V ×g = 12,8	75 * . 098 = 126	<u> </u>	/= 12,0 / 0
4W HALF	CLAMP(S)		MATL 6061-7	6 AL.
			MATL, 6061-7	g=.058
AD = ,6 y , 6 = ,36 IN	~		130- 21.12-1	

(4) HALF CLAMPS: W= 4 V×g = 4x,219x,098 = .857 LBS

FN B NIVIT	JET PROPULSION LABORATORY CALIFORNIA INSTITU OF TECHNOLOGY	TE	E 35 OF
TITLE / CALC			ROJECT
WEIGHT CALC	HEAT DUMP MIRRY		SUMMARY
1 w	HEAT DUMP MIRRAR	1.91	GHT - LBS
2 10	SUPPORT TUBING	.112	
2 W	MIRROR SUPPORT YOU	E 1.26	, d
414	HALF CLAMPS	. 357	
		TOTAL	4.139

The state of the s

			PAGE <u>36</u> OF
F. H BONI. 17		JET PROPULSION	
PREPARED BY	DATE	CALIFORNIA INSTITUTE	REPORT NO.
CHECKED BY	DATE	OF TECHNOLOGY	PROJECT
WEIGHT CALC H	NUSING TRL	155 - SUSPENSION	V - FIXED END
17/ TIE-C	HANNEL	MA	ATL,: INVAR 36; S=.291 //w3
	e xt(TYP)	g = 3	a = 4.0 $b = 2.7$ $c = 2.0$ $e = 26.5$ $R = 1.0$
Part of the second seco		f = a	ì
(2) REQ'U.	$V_{2} = (b-e-1)$ $V_{3} = (e-f-1)$ $V_{4} = \pi$ $W = E V \times S$	$t) \times a \times (e - f - g) = 2.7 - 2.0 $ $-g) (a - 2t) \times c = 21.5 (4.0 - 6)$ $-(R^2 + r^2) a = \pi (1.0^2)$ $= 124.1 \times .291 = 30$	$(1.0) \times 4.0 \times (26.5-2.0-3.0) = 17.2$ $(1.0) \times 2.0 = -129.0$ $(4.5^2) \times 4.0 = -15.7$ (6.1 LBS EA. 124.1)
1	1 = 4.0	5) [55-1.0] (50-1.0)-(6	$5.5-1.0-2.0)\times 5.0-1.0-2.0 - 54.30$ $5.5-1.0-2.0)\times 5.0-1.0-2.0 - 54.30$ $5.5-1.0-2.0)\times 5.0-1.0-2.0 - 54.30$
LEJKER'D	W = 2	V xp = 55.70 x, 291 =	- 10.6 LDS

CLASSIFICATION

JPL 0999-1-5 APR 66

			PAGE <u>37</u> OF
FH. BONLUIT	5-29-68	JET PROPULSION	
PREPARED BY	5-29-68 DATE		REPORT NO.
CHECKED BY	DATE	CALIFORNIA INSTITUTE OF TECHNOLOGY	PROJECT
	ic - Housin	G TRUSS - SUSPE	NSIDNI - FIXED END
3+7	APER SIC	Cor MA.	TZ. ' INVAR 36"; 8=.291 //
(2)KEG.D.	trial V ₃	V,= ax bxc = (b-2t) xe-t)a	$2=3.5; C=2.4 + 5$ $= 1.8 \times 2.0 \times 3.5 = 12.6$ $= 1.8 \times 2.0 \times 3.5 = 12.6$ $= 1.8 \times 2.0 \times 3.5 = 12.6$ $= 1.8 \times 2.0 \times 3.5 = 1.4$
		p= 7,5×,29/=	- 1/ - 7 -
4 ty	YOKET	$V_{1} = avcx$ $V_{2} = (h-t)$ $t Typ \qquad V_{3}$	2. ! INVAR 36; $S = .291\%$ = 4.0; $6 = 4.0$; $C = .31.0$ = .5; $6 = 4.0$; $6 = 1.7$ $1N^{2}$ $t = 4.0 \times 31.0 \times .5 = 62.0$ $1 = (6 - 6) \times \frac{C - 6}{2} = \frac{116.3}{2}$ = $(4.0 - 1.7) \times \frac{27}{2} = \frac{31.0}{2}$ $1 = (4.0 - 1.7) \times \frac{27}{2} = \frac{31.0}{2}$ $1 = (4.0 - 1.7) \times \frac{27}{2} = \frac{31.0}{2}$
		104	

CLASSIFICATION

JPL 0999-1-5 APR 66

PAGE 83 OF_

JET PROPULSION

LABORATORY PREPARED BY CALIFORNIA INSTITUTE

(35

4 s

Station, Block

REPORT NO.

CHECKED BY

(3)

155

GUIDE SHAFT

DENSITY: 4/1N3 STEEL: 283

ALUM : , 098

INVAR: 291

DATE

OF TECHNOLOGY

PROJECT

TITLE

CLASSIFICATION

105

JPL 0999-1-5 APR 66

APPENDIX C

PRELIMINARY DESIGN LOADS FOR THE ATM TELESCOPE

APPENDIX C

PRELIMINARY DESIGN LOADS FOR THE ATM TELESCOPE B. K. Wada

Various design loads for preliminary analysis of the ATM Telescope are currently used for its design. The objective of the I.O.M. is to document the current estimate of the levels for preliminary design.

A review of the document, "Environmental Design and Qualification Test Criteria for Apollo Telescope Mount Components" 50MOZ408A Revision A, February 1, 1968 indicated that the low frequency sinusoidal vibration loads are the most severe. The vibration levels applicable to ATM are listed in Appendix B. I. E. title "Vibration Criteria for components mounted to ATM Canister Spar Assembly, total weight of components greater than 600 pounds but less than 800 pounds" on page 49. As a first estimate, without a dynamic analysis, an equivalent quasi-static load is determined.

A reasonable estimate of structural damping for the structure is 2 percent of critical damping. Damping values have ranged from 1/2 percent to 5 percent on various spacecrafts dependent on the mode and amplitude of vibration.

For a 2 percent damping value, the structural amplification Q is obtained from,

$$Q = \frac{1}{2\mu} = \frac{1}{2(.02)} = 25.$$

In the flight axis direction, the acceleration is estimated to be 2.3 x 25 = 57.5 g's and in the lateral axis 2.0 x 25 = 50 g's.

For preliminary design purpose, 50 g's quasi-static loads in three orthogonal directions are used. The loads are assumed to act independently in the three orthogonal directions.

Better estimates of the loads will be obtained upon completion of the dynamic analysis and after the vibration tests. The true loads can't be evaluated until after the ATM Telescope vibration tests and the total ATM systems test at MSFC.

APPENDIX D PRELIMINARY STRESS ANALYSIS OF HOUSING TRUSS STRUCTURE

H, H.Mc! PREFARED BY CHECKED BY APPENDIX I		PAGEOF
LIGHT TUBE CENTER LINE, 2# FORWARD SUPPORT COMMERN-VIOLOW 4, 160#	FRAME STRUCTURES STUDY OF ATM FRAME STRUCTURE 1000	
CLASSIFICATION	109	JPL 0999-1-S APR

JPL 0999-1-5 APR 66

I

CHECKED BY	DATE	JET PROPULSION — LABORATORY — CALIFORNIA INSTITUTE — OF TECHNOLOGY	PAGE _2_OF REPORT NO. PROJECT
10 = AXIAL LOAD TAKE MOMENTS			
= (5600+ 448. RIACTION R	5 - 1183.0 T AT	1.30.745)10.0 + (34.)10 = 48655 in: AFT SUPPOR 48655 = 579,5	75
NEXT CONSIDER	579.5 lbs.		N C-D
P. P. F. T. F. T. 20°20' 8°50'		ASSUME LOAD I DIRECTL TO THE WITHOUT	PRELIMINARY ANALYSIS ALL THE FORWARD 9BOVE SPAR IS Y TRANSFERED AFT SUPPORT PASSING THEOUGH RACINGS.
	+ 3×251	30 + 45 + 10 + 3 = 36 $SHEAR = 36$	
	30 - 20	9-00 = 1630 5. 110	JPL 0999 -5 APR 66

N

CHECKED BY	DATE	JET PROPULSION - LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY	REF	OF
T. T.E			7	
VEXT TAKE	MOM BUTS	ABOUT	PT, E	
M, = 2000 (14.5)) + (1630,	V14.5) - (579.5	.)(27.66)	
= 30,004 in	1-/25			
NOW THIS M	has to	BE TAKEN	3 4 TA	E TRUSS
P2 - 3660	$\frac{4}{5} = 178$	35.6 Nos.		
NEXT BOLVE			IN TH	E MEMBERS
F, COO 8°50=	3630 - 500	0 = 3/30 16s.		
Fi: 3130	316	1.7.7 165.		
T, = ACTUAL	LOAD	IN EACH	BRACING	
$T = \frac{316}{2\cos^2\theta}$	7.7 165.	$=\frac{3167.7}{2(.9377)}$	= 1689.0	165.
-F, ccs 8°50' +8	3/5.+/78 5	$76 = F_1 \cos$	20°20'	
$F_2 = \frac{-3130 + 93}{93}$	377	- <u>529.6</u> = -	-564,8 16s	
Cz = actual				
= -564,8 2 Cm 8	°50′ = -	564.8 1.9762 = 28	35.8 lbs.	
F coo 20.20'	=-Fs co	- 20°201 - 100	00 = 529	6-1000
$F_3 = \frac{-470}{.93}$	$\frac{0.4}{77} = -5$	01.7 165.		

0

	41		
PAGE	. 7	OF	

JET PROPULSION

REPARED BY DA

LABORATORY

REPORT NO.

CHECKED BY

CALIFORNIA INSTITUTE

OF TECHNOLOGY

PROJECT

TITLE

$$C_{s} = \frac{-501.7}{2005.8050} = \frac{-501.7}{1.9762} = -\frac{1-253.9165.7}{1.9762}$$

$$F_{9} = \frac{2.28^{\circ}50^{\prime} = -F_{3} \cos 20^{\circ}50^{\prime} + 815 - 1785.6}{470.4 + 815 - 1785.6}$$

$$= -500.2 \text{ 16}.$$

NOTE THIS VALUE SHOULD BE-500, IS OFF BY 0.2 16. BECAUSE OF THE MOUNTING CFF.
OF FIGURES TO ONE DECIMAL PLACE.

NOTE: THE F'S ARE THE FORCES IF STRUCTURE WAS 2-D. THE TIGCS ARE THE FORCES IN THE 3-D. STRUCTURE.

PAGE _	5	_OF_	
 REPOR	T NO.		

PREPARED BY

DATE

LABORATORY
CALIFORNIA INSTITUTE

JET PROPULSION

OF TECHNOLOGY

ECRED BY DAT

PROJECT

TILE

To the state of

3-G SIDE LOAD

LOAD, THE REACTIONS FOR THE SIDE ARE T0 EQUIVALENT THE COMBINATION DIAR "TY SUPPORTING CENTERLINE THE ON CENTERLINE. RUTATION ABOUT. THE IN THE LIKEWISE WITH THE STRESSES MEMBERS.

FOR CTR. LINE SUPPORT, TAKE MOMENTS ABOUT

7(3)(25.75) + (45)(3)(18.75) + (30)(3)(8.0) + 3(3)(5.5) = 3(25) 3(27.66 + 13.83 + 1.0) + (0)(3)(8) + (504)(3)(82.98 + 5.13 + 1) $+ (160)(3)(56.32 + 13.83) + 2(3)(27.66 + 1) - R_0(82.98 + 1)$

 $R_{0} = \frac{180.25 + 843.75 + 256.5 - 3186.75 - 80 - 17824.0 - 11224.0 - 57.32}{\frac{1}{3}(83.98)}$

= (-31081,57)3 = [110.3 1bs.]

THUS THE SHEAR ON EACH OF THE AFT HINGE is 110.3 = 1555.2 165.1

THE TOTAL SIDE LOAD: = (200 + 75 + 75 + 160 + 2 + 7 + 13) 3 = 1596 165.

				PAGE OF
			PULSION	
PREPARED BY	DATE		RATORY ——— A INSTITUTE	REPORT NO.
CHECKED BY	DATE		HNOLOGY	PROJECT
THEE				
	1596-1110 SHEAR	0,3=/4	85.7 Hs./	
18 FWI 25 25)M.	The state of the s	THE	LEFT PAI	PT OF THE
49 80 25 25 JMc	STRUCT	URE.	AS A	FREE BODY
AFC	AND	TAKE	MOMENTS	ABSUT A.
(4511 11 (18,75) + (30)	3)(2) +(3)(3))(SS) +	(7)(3)(25.75	
	•			•
= (3)(25)(14.83)	1 + 3/25 / 7	(2.77) 7	(0)(3)(8) 7 2	$L(3)(10) - M_{c}$
$\frac{1}{3}$ M, = 252.79	5 m - 165,			
$M_c = 758.75$	ni - 165			
HINGE	7110.3 /6s	T? =	$M_c = 75$	8.75 = 37.01/bs
P Cs		1, t	20,5 20	0,5
Ne (12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NEXT		10MENTS ABOUT
		(110.3)	(27.66)-M	$=(29.0)P_2$
1		D _ 3	0,710,90-7	58.75 29.952 15
P		2 -	29.0	58.75 29,952.15
19				
HORIZONTAL SI	ECTION	P2 =	1032,8 16s,	
-Fg Cos 8'50' = 1	032.8 165			
$F_5 = \frac{-1032.8}{.9881} =$	-/6450	165.		
75 .9881				
나는 아는 얼마를 하는 아이랑 이 모델 주름이				그리 중요한 동안 내용 동안된 사람이

= [-557.3 165

			PAGE 7	OF
		JET PROPULSION	ON	
PREPARED BY	DATE	- LABORATORY	REPORT NO.	
CHECKED BY	DATE	CALIFORNIA INSTIT	v —	
TITLE	DATE	OT SECTIONOLOG	T PROJECT	
- F. Cos 3050' + 3	37.0 = F	0002020	/	
Fe - 1069.8 .9377	: 114	10.9 16s		
To = 1140.9		140.9 = [5°	77.3 165/	
F7 F8 1140	 ,			
$C_7 = -577.$,			
-5 Cos 20'20'-) '	
$F_{8} = \frac{1032.8}{.9881}$	- [104	5.2 lbs		
T8 = 1045.	2 = 20'	1.8754	- 557.3 16s.	
15 Cus B"50"	= /032	2.B <u>CH</u>	ECKS WITH PZ	
THE TORQUE	OF RE	NO ABOUT	CTR LINE	
M- = (485.7))(No) = 1	7771.2 m	165	
THE LOAD IN	THE	BRACINGS	IS ALTERNA	TELY
COMPRESSION				
	MT		7771.2	
C+= 1+=-	8(14.5) 8	2in 20°20'	B(14.5)(1347)	
= /9	93.1 165			

PAGE <u>8</u> OF ___ JET PROPULSION **LABORATORY** PREPARED BY REPORT NO. CALIFORNIA INSTITUTE CHECKED BY OF TECHNOLOGY DATE PROJECT TITLE (2011B/IVE THE AX1146 TORSIONAL LOADS 7,= 1689 76=577.3 $T_7 = 1684.0$ $C_7 = -577.3$ C=-193.1 Cz= -285.8 $C_2 = -285.8$ $T_8 = 557.3$ C= -557.3 Ty = 193.1 -649.7 Cy=-193,1 C3 = -253.9 -(= -253,9) Ta - 557.3 Ca= -557/3 T. 193.1 496.5 v Cy = -193.1 -1001/.3 Cq - - 269.9 " $C_{7} = -577.3$ Cq = 269.9 Cy =-193.1 -1040.3 V T = 577.3 $T_1 = 193.1$ 500.5= -10.40.316sTHE MAXIMUM COMPRESSION THE BICACINGS THIS GOVERNS THE DESIGN 1" x .045 INVAR. TUBING USE -UPPLLE

PAGE 9	OF	
--------	----	--

JET PROPULSION **LABORATORY**

PREPARED BY

REPORT NO

CHECKED BY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PROJECT

FOR I"DX.045" INVAR TUBE

E = 21.0 x 106

I = ,0154

CRITICAL LOAD

$$P_{CR} = \frac{\pi^2 E^{\pm}}{L^2} = \frac{\pi^2 (21)(106)(.0154)}{29.84^2} = 3580 LBS.$$

$$M.5. = \frac{3580}{1040.3} - 1 = 2.44$$

THE SINGLE MAX TENSION IS 1689 # DUE TO AXIAL LOW

FOR 50 G, IT WILLBE 1689 x 50 = 8445 #

THE MAX, CONTRESSION DUE SIDE LOAD

15-577,3-193,1 =-770,4

FOR 50 G SIDE LAND = -770.4 (50) = -1285048

$$1.15 = \frac{3580}{12850} - 1 = \frac{-.72}{}$$

PAGE 10 OF __

JET PROPULSION

LABORATORY

REPORT NO.

DATE

DATE

CALIFORNIA INSTITUTE

OF TECHNOLOGY

PROJECT

SECTION B-C

CHECKED BY

NOTE: 800 /s. MOVE FORCE DUE CAMBRA DOWN Q. ALSO NAVE ADD MOMEN THIS EQUIVALENT FIRCES.

(800)(23) = P, (205) P = 897,6 lbs.

HORIZONTAL

DEVIDED INTO FOUR PARTS

$$R_9 = \frac{830}{4} = 207.5 \text{ lbs.}$$

M. = (579.5)(27.66) + 18,400 - (26000 + 970.6)(10.25)

PAGE	_//	OF	

JET PROPULSION

LABORATORY

CHECKED BY

CALIFORNIA INSTITUTE

OF TECHNOLOGY

PROJECT

SOLVE FOR THE FORCES IN THE THAT THE F'S ARE THE REMEMBERING DIMENSIONS. THO

$$F_{13} = \frac{132.5}{9881} = \frac{134.1}{145.}$$

$$F_{13} = \frac{11.70.5}{.9377} = \frac{1248.2}{.9377} = \frac{1248.2}{.9377} = \frac{1248.2}{.9377} = \frac{155}{.9377}$$

$$F_{15} = \frac{-755.5}{9377} = \frac{-805.7155}{9377}$$

CHECKS, THIS

PAGE	12	OF	
		\sim .	

JET PROPULSION

PREPARED BY DATE

LABORATORY

REPORT NO.

CHECKED BY

DATE

CALIFORNIA INSTITUTE OF TECHNOLOGY

PROJECT

TITLE

TIDE LOAD

$$M_Q = (555.3)(27.66) + (37.0)(20.5) = 15,3526 + 758.5$$

= 16,118.1 m - 165.

$$P_c = \frac{16.11.8.1}{29.0} = 555.8$$

PAGE	<u>/3</u>	OF	
------	-----------	----	--

JET PROPULSIO	JET	PR	ROPU	ILSION
---------------	-----	----	------	--------

LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

For cos 8050'+ Fig cos 20'20' = - 37.0

$$F_{10} = -\frac{553.8}{9881} = -562.5' 165.$$

- 555,8 = - 555.8

$$T_{1c} = \frac{285.9}{2(.9377)} = [152.416.]$$

$$T_{17} = \frac{562.5}{5(9377)} = 299.9 / 65.$$

$$C_{20} = \frac{-562.5}{2(.9377)} = \left[-299.916, \right]$$

PAGE 14 OF ____ JET PROPULSION LABORATORY PREPARED BY REPORT NO CALIFORNIA INSTITUTE CHECKED BY OF TECHNOLOGY PROJECT FOR TORSION SECTION 15 SAME A5 SECTION C-D Tis: 71.5 Tig = 71.5 Cg: -279.9 7- 193.1 CT = -193. 1 158.3 Tit = 631,6 Co = - 299,9 Tia 631.6 Tr = 193.1 Tn = 299.9 C7 -- 193.1 738.4 C15: -407.7 Co - - 299.9 0,5 = -407.7 CT - - 193.1 Tin = 299.9 Tr . 193.1 $T_{10} = 152.4$ $T_{19} = 279.9$ $T_{7} = 193.1$ 625.4T16 = 152 4 CP = -279.9 CT - 193.1 -320.6 MAX COMPLESIVE LOAD = -900.7 165. USING 1" X.045 INVAR TUBING M.S. = 2600-1 = HIGH 122

JPL 0999 -S APR 66

CLASSIFICATION

PAGE	14	OF	
		01	

J	E	T	P	R	0	P	U	L	S	ı	0	N	

LABORATORY PREPARED BY DATE

REPORT NO

CALIFORNIA INSTITUTE

CHECKED BY

OF TECHNOLOGY

PROJECT

1+1 L.E.

FOR TORSION

SECTION

نزر

SAM E

45

SECTION C-D

$$\frac{7}{7} + \frac{193.1}{-15.3}$$

$$T_{13} = 71.5$$
 $T_{19} = 271.9$
 $C_{7} = -193.1$
 158.3

$$\frac{C_{7} = -193.1}{-900.7}$$

$$\frac{C_{7}=-193.1}{-320.6}$$

$$T_{10} = 152.4$$

$$T_{19} = 279.9$$

$$T_{7} = 193.1$$

$$625.4$$

MAX.

COMPRESIVE

- 900.7

165.

USING 1" X.045 INVAR TUBING

M.S. = 3600-1 = HIGH

PAGE	15	OF	
		•,	

JET PROPULSION

LABORATORY

REPORT NO

CHECKED BY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PROJECT

TITLE

THE MAX. TENSION IS 631,6 #

FOR 559, IT WILL BE 631.6 (50) = 3.160 #

" ON X CAS INVAR TUBE

FER MAX, COMPRESSION 15 -279,9-193,1=-473,0

FAR 50 G SIDE LOAD

MAX. COMP. = -473 (50) = -7900 LES

Por = -3600 LBS

MS = 3600 -1 = 544